Effectiveness of Moringa oleifera extract supplementation in increasing Glucagon-like peptide-1 (GLP-1) in prediabetic model
DOI:
https://doi.org/10.31101/jkk.3553Keywords:
Glucagon-like peptide-1; Moringa oleifera leaf extract; prediabetesAbstract
References
Abdel-Hamid, A. A. M., & Firgany, A. E. D. L. (2019). Correlation between pancreatic mast cells and the low grade inflammation in adipose tissue of experimental prediabetes. Acta Histochemica, 121(1), 35–42. https://doi.org/10.1016/j.acthis.2018.10.005
Ahmad, J., Khan, I., & Blundell, R. (2019). Moringa oleifera and glycemic control: A review of current evidence and possible mechanisms. Phytotherapy Research, 33(11), 2841–2848. https://doi.org/10.1002/ptr.6473
Ahmadieh, H., & Azar, S. T. (2014). The role of incretin-based therapies in prediabetes: A review. Primary Care Diabetes, 8(4), 286–294. https://doi.org/10.1016/j.pcd.2014.02.005
Anthony, N., Lenclume, V., Fianu, A., Moullec, N. L., Debussche, X., Gérardin, P., Marimoutou, C., & Nobécourt, E. (2021). Association between prediabetes definition and progression to diabetes: The REDIA follow-up study. Diabetes Epidemiology and Management, 3, 100024. https://doi.org/10.1016/j.deman.2021.100024
Balakumar, M., Raji, L., Prabhu, D., Sathishkumar, C., Prabu, P., Mohan, V., & Balasubramanyam, M. (2016). High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Molecular and Cellular Biochemistry, 423(1–2), 93–104. https://doi.org/10.1007/s11010-016-2828-5
Bell, D. A., & Watts, G. F. (2015). Contemporary and Novel Therapeutic Options for Hypertriglyceridemia. Clinical Therapeutics, 37(12), 2732–2750. https://doi.org/10.1016/j.clinthera.2015.08.001
El-Shehawi, A. M., Alkafafy, M., El-Shazly, S., Sayed, S., Farouk, S., Alotaibi, S., Madkour, D. A., Khalifa, H. K., & Ahmed, M. M. (2021). Moringa oleifera leaves ethanolic extract ameliorates high fat diet-induced obesity in rats. Journal of King Saud University - Science, 33(6), 101552. https://doi.org/10.1016/j.jksus.2021.101552
Farr, O. M., & Mantzoros, C. S. (2017). Treating prediabetes in the obese: Are GLP-1 analogues the answer? The Lancet, 389(10077), 1371–1372. https://doi.org/10.1016/S0140-6736(17)30315-X
Gamede, M., Mabuza, L., Ngubane, P., & Khathi, A. (2021). Preventing the onset of diabetes-induced chronic kidney disease during prediabetes: The effects of oleanolic acid on selected markers of chronic kidney disease in a diet-induced prediabetic rat model. Biomedicine and Pharmacotherapy, 139, 111570. https://doi.org/10.1016/j.biopha.2021.111570
Ganjayi, M. S., Karunakaran, R. S., Gandham, S., & Meriga, B. (2023). Quercetin-3-O-rutinoside from Moringa oleifera Downregulates Adipogenesis and Lipid Accumulation and Improves Glucose Uptake by Activation of AMPK/Glut-4 in 3T3-L1 Cells. Revista Brasileira De Farmacognosia, 33(2), 334–343. https://doi.org/10.1007/s43450-022-00352-9
Gómez-Martínez, S., Díaz-Prieto, L. E., Castro, I. V., Jurado, C., Iturmendi, N., Martín-Ridaura, M. C., Calle, N., Dueñas, M., Picón, M. J., Marcos, A., & Nova, E. (2022). Moringa oleifera leaf supplementation as a glycemic control strategy in subjects with prediabetes. Nutrients, 14(1), 1–15. https://doi.org/10.3390/nu14010057
Hassan-Danboyi, E., Jimoh, A., Alhassan, A., Danboyi, T., Mohammed, K. A., Dubo, A. B., Haruna, J., & Yakubu, B. B. (2021). Antioxidant Effects of L-citrulline Supplementation in High-fat Diet- and Dexamethasone-induced Type-2 Diabetes Mellitus in Wistar Rats (Rattus norvegicus). Nigerian Journal of Experimental and Clinical Biosciences, 9(2), 95. https://doi.org/10.4103/njecp.njecp_4_21
Hinnen, D. (2017). Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectrum, 30(3), 202–210.
Hossain, U., Das, A. K., Ghosh, S., & Sil, P. C. (2020). An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology, 145, 111738. https://doi.org/10.1016/j.fct.2020.111738
Huda, N., Herowati, R., & Nurrochmad, A. (2020). Aktivitas Fraksi-Fraksi Etanol Murbei (Morus australis Poir.) Terhadap Fungsi Hati Tikus Putih Model Hiperkolesterolemia yang Diberi Diet Tinggi Lemak. Jurnal Farmasi & Sains Indonesia, 3(2), 28–36.
Husna, F., Suyatna, F. D., Arozal, W., & Purwaningsih, E. H. (2019). Model Hewan Coba pada Penelitian Diabetes Animal Model in Diabetes Research. Pharmaceutical Sciences and Research, 6(3), 131–141.
IDF. (2017). IDF Diabetes Atlas Eighth Edition.
IDF. (2022). IDF. Diabetes Atlas, 10th edn.
Kusumawati, N. (2023). Prediabetes (A. Hamid, Ed.; 1st ed.).
Lee, J. H., Kim, D. Y., Pantha, R., Lee, E. H., Bae, J. H., Han, E., Song, D. K., Kwon, T. K., & Im, S. S. (2022). Identification of Pre-Diabetic Biomarkers in the Progression of Diabetes Mellitus. Biomedicines, 10(1), 5–10. https://doi.org/10.3390/biomedicines10010072
Maghsoudi, Z., Ghiasvand, R., & Salehi-Abargouei, A. (2016). Empirically derived dietary patterns and incident type 2 diabetes mellitus: A systematic review and meta-analysis on prospective observational studies. Public Health Nutrition, 19(2), 230–241. https://doi.org/10.1017/S1368980015001251
Monraz-Méndez, C. A., Escutia-Gutiérrez, R., Rodriguez-Sanabria, J. S., Galicia-Moreno, M., Monroy-Ramírez, H. C., Sánchez-Orozco, L., García-Bañuelos, J., De la Rosa-Bibiano, R., Santos, A., Armendáriz-Borunda, J., & Sandoval-Rodríguez, A. (2022). Moringa oleifera Improves MAFLD by Inducing Epigenetic Modifications. Nutrients, 14(20), 1–19. https://doi.org/10.3390/nu14204225
Nauck, M. A., Quast, D. R., Wefers, J., & Meier, J. J. (2021). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46(October 2020), 101102. https://doi.org/10.1016/j.molmet.2020.101102
Paula, P. C., Oliveira, J. T. A., Sousa, D. O. B., Alves, B. G. T., Carvalho, A. F. U., Franco, O. L., & Vasconcelos, I. M. (2017). Insulin-like plant proteins as potential innovative drugs to treat diabetes—The Moringa oleifera case study. New Biotechnology, 39, 99–109. https://doi.org/10.1016/j.nbt.2016.10.005
Pegah, A., Abbasi-Oshaghi, E., Khodadadi, I., Mirzaei, F., & Tayebinia, H. (2021). Probiotic and resveratrol normalize GLP-1 levels and oxidative stress in the intestine of diabetic rats. Metabolism Open, 10, 100093. https://doi.org/10.1016/j.metop.2021.100093
Popoviciu, M. S., Păduraru, L., Yahya, G., Metwally, K., & Cavalu, S. (2023). Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. International Journal of Molecular Sciences, 24(13). https://doi.org/10.3390/ijms241310449
Singh, A. K., Yadav, D., Sharma, N., & Jin, J. O. (2021). Dipeptidyl peptidase (Dpp)‐iv inhibitors with antioxidant potential isolated from natural sources: A novel approach for the management of diabetes. Pharmaceuticals, 14(6), 1–16. https://doi.org/10.3390/ph14060586
Vargas-Sánchez, K., Garay-Jaramillo, E., & González-Reyes, R. E. (2019). Effects of moringa oleifera on glycaemia and insulin levels: A review of animal and human studies. Nutrients, 11(12), 1–19. https://doi.org/10.3390/nu11122907
Yang, Y., Shi, C.-Y., Xie, J., Dai, J.-H., He, S.-L., & Tian, Y. (2020). Identification of Potential Dipeptidyl Peptidase (DPP)-IV Inhibitors among Moringa oleifera Phytochemicals by Virtual Screening, Molecular Docking Analysis, ADME/T-Based Prediction, and In Vitro Analyses. Molecules (Basel, Switzerland), 25(1), 189. https://doi.org/10.3390/molecules25010189
Zamora-Ros, R., Forouhi, N. G., Sharp, S. J., González, C. A., Buijsse, B., Guevara, M., Van Der Schouw, Y. T., Amiano, P., Boeing, H., Bredsdorff, L., Clavel-Chapelon, F., Fagherazzi, G., Feskens, E. J., Franks, P. W., Grioni, S., Katzke, V., Key, T. J., Khaw, K. T., Kühn, T., … Wareham, N. J. (2013). The association between dietary flavonoid and lignan intakes and incident type 2 diabetes in european populations: The EPIC-InterAct study. Diabetes Care, 36(12), 3961–3970. https://doi.org/10.2337/dc13-0877
Zborowski, V. A., Heck, S. O., Marques, L. S., Bastos, N. K., & Nogueira, C. W. (2021). Memory impairment and depressive-like phenotype are accompanied by downregulation of hippocampal insulin and BDNF signaling pathways in prediabetic mice. Physiology and Behavior, 237(October 2020). https://doi.org/10.1016/j.physbeh.2021.113346
Downloads
Published
How to Cite
Issue
Section
Citation Check
License
Copyright (c) 2024 Jurnal Kebidanan dan Keperawatan Aisyiyah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
With the receipt of the article by the Jurnal Kebidanan dan Keperawatan Aisyiyah Editorial Board and the decision to be published, then the copyright regarding the article will be diverted to Jurnal Kebidanan dan Keperawatan Aisyiyah. Universitas 'Aisyiyah Yogyakarta as the publisher of Jurnal Kebidanan dan Keperawatan Aisyiyah hold the copyright regarding all the published articles in this journal.
Jurnal Kebidanan dan Keperawatan Aisyiyah is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.