Effectiveness of Moringa oleifera extract supplementation in increasing Glucagon-like peptide-1 (GLP-1) in prediabetic model

Authors

  • Esri Rusminingsih Universitas Diponegoro , Indonesia
  • Hardhono Susanto Universitas Diponegoro , Indonesia
  • Diana Nur Afifah Universitas Diponegoro , Indonesia
  • Judiono Wibowo Politeknik Kesehatan Bandung, Indonesia
  • Yance Anas Universitas Wahid Hasyim, Indonesia

DOI:

https://doi.org/10.31101/jkk.3553

Keywords:

Glucagon-like peptide-1; Moringa oleifera leaf extract; prediabetes

Abstract

Prediabetes is a serious global health problem. The prevalence of prediabetes is estimated to be higher than that of diabetes mellitus (DM), and 5%-12.5% of prediabetic patients will develop DM. Epidemiological studies showed that consumption of polyphenol-rich foods impacts blood glucose control and improves insulin resistance. Moringa leaves contain high levels of flavonoids that are effective in glucose control. This study aimed to determine the effect of moringa leaf extract supplementation on increasing GLP-1 levels in prediabetes models. This study used a randomized controlled trial-post-test-only design. Twenty-five male Rattus norvegicus were divided into five groups, namely the normal group, the prediabetes group, and three intervention groups, each given moringa leaf extract at a dose of 75 mg/kgbb, 150 mg / kgbb and 225 mg / kgbb. After 4 weeks of intervention, a GLP-1 examination was conducted. Data analysis using the ANOVA test. There was a significant difference in GLP-1 levels in the intervention group compared to the prediabetes control group (p<0.05). GLP-1 levels increased as the dose given increased. In the intervention group, the dose of 225 mg/kg bw showed the highest increase in GLP-1 levels, but there was no significant difference compared to the 150 mg/kg bw dose group. Moringa leaf extract supplementation is proven to increase GLP-1 in the Rattus norvegicus model. The effect gets better with increasing doses. Further development and testing related to this supplementation are needed so it can be used as a safe non-pharmacological treatment for prediabetes and DM patients.

References

Abdel-Hamid, A. A. M., & Firgany, A. E. D. L. (2019). Correlation between pancreatic mast cells and the low grade inflammation in adipose tissue of experimental prediabetes. Acta Histochemica, 121(1), 35–42. https://doi.org/10.1016/j.acthis.2018.10.005

Ahmad, J., Khan, I., & Blundell, R. (2019). Moringa oleifera and glycemic control: A review of current evidence and possible mechanisms. Phytotherapy Research, 33(11), 2841–2848. https://doi.org/10.1002/ptr.6473

Ahmadieh, H., & Azar, S. T. (2014). The role of incretin-based therapies in prediabetes: A review. Primary Care Diabetes, 8(4), 286–294. https://doi.org/10.1016/j.pcd.2014.02.005

Anthony, N., Lenclume, V., Fianu, A., Moullec, N. L., Debussche, X., Gérardin, P., Marimoutou, C., & Nobécourt, E. (2021). Association between prediabetes definition and progression to diabetes: The REDIA follow-up study. Diabetes Epidemiology and Management, 3, 100024. https://doi.org/10.1016/j.deman.2021.100024

Balakumar, M., Raji, L., Prabhu, D., Sathishkumar, C., Prabu, P., Mohan, V., & Balasubramanyam, M. (2016). High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Molecular and Cellular Biochemistry, 423(1–2), 93–104. https://doi.org/10.1007/s11010-016-2828-5

Bell, D. A., & Watts, G. F. (2015). Contemporary and Novel Therapeutic Options for Hypertriglyceridemia. Clinical Therapeutics, 37(12), 2732–2750. https://doi.org/10.1016/j.clinthera.2015.08.001

El-Shehawi, A. M., Alkafafy, M., El-Shazly, S., Sayed, S., Farouk, S., Alotaibi, S., Madkour, D. A., Khalifa, H. K., & Ahmed, M. M. (2021). Moringa oleifera leaves ethanolic extract ameliorates high fat diet-induced obesity in rats. Journal of King Saud University - Science, 33(6), 101552. https://doi.org/10.1016/j.jksus.2021.101552

Farr, O. M., & Mantzoros, C. S. (2017). Treating prediabetes in the obese: Are GLP-1 analogues the answer? The Lancet, 389(10077), 1371–1372. https://doi.org/10.1016/S0140-6736(17)30315-X

Gamede, M., Mabuza, L., Ngubane, P., & Khathi, A. (2021). Preventing the onset of diabetes-induced chronic kidney disease during prediabetes: The effects of oleanolic acid on selected markers of chronic kidney disease in a diet-induced prediabetic rat model. Biomedicine and Pharmacotherapy, 139, 111570. https://doi.org/10.1016/j.biopha.2021.111570

Ganjayi, M. S., Karunakaran, R. S., Gandham, S., & Meriga, B. (2023). Quercetin-3-O-rutinoside from Moringa oleifera Downregulates Adipogenesis and Lipid Accumulation and Improves Glucose Uptake by Activation of AMPK/Glut-4 in 3T3-L1 Cells. Revista Brasileira De Farmacognosia, 33(2), 334–343. https://doi.org/10.1007/s43450-022-00352-9

Gómez-Martínez, S., Díaz-Prieto, L. E., Castro, I. V., Jurado, C., Iturmendi, N., Martín-Ridaura, M. C., Calle, N., Dueñas, M., Picón, M. J., Marcos, A., & Nova, E. (2022). Moringa oleifera leaf supplementation as a glycemic control strategy in subjects with prediabetes. Nutrients, 14(1), 1–15. https://doi.org/10.3390/nu14010057

Hassan-Danboyi, E., Jimoh, A., Alhassan, A., Danboyi, T., Mohammed, K. A., Dubo, A. B., Haruna, J., & Yakubu, B. B. (2021). Antioxidant Effects of L-citrulline Supplementation in High-fat Diet- and Dexamethasone-induced Type-2 Diabetes Mellitus in Wistar Rats (Rattus norvegicus). Nigerian Journal of Experimental and Clinical Biosciences, 9(2), 95. https://doi.org/10.4103/njecp.njecp_4_21

Hinnen, D. (2017). Glucagon-Like Peptide 1 Receptor Agonists for Type 2 Diabetes. Diabetes Spectrum, 30(3), 202–210.

Hossain, U., Das, A. K., Ghosh, S., & Sil, P. C. (2020). An overview on the role of bioactive α-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology, 145, 111738. https://doi.org/10.1016/j.fct.2020.111738

Huda, N., Herowati, R., & Nurrochmad, A. (2020). Aktivitas Fraksi-Fraksi Etanol Murbei (Morus australis Poir.) Terhadap Fungsi Hati Tikus Putih Model Hiperkolesterolemia yang Diberi Diet Tinggi Lemak. Jurnal Farmasi & Sains Indonesia, 3(2), 28–36.

Husna, F., Suyatna, F. D., Arozal, W., & Purwaningsih, E. H. (2019). Model Hewan Coba pada Penelitian Diabetes Animal Model in Diabetes Research. Pharmaceutical Sciences and Research, 6(3), 131–141.

IDF. (2017). IDF Diabetes Atlas Eighth Edition.

IDF. (2022). IDF. Diabetes Atlas, 10th edn.

Kusumawati, N. (2023). Prediabetes (A. Hamid, Ed.; 1st ed.).

Lee, J. H., Kim, D. Y., Pantha, R., Lee, E. H., Bae, J. H., Han, E., Song, D. K., Kwon, T. K., & Im, S. S. (2022). Identification of Pre-Diabetic Biomarkers in the Progression of Diabetes Mellitus. Biomedicines, 10(1), 5–10. https://doi.org/10.3390/biomedicines10010072

Maghsoudi, Z., Ghiasvand, R., & Salehi-Abargouei, A. (2016). Empirically derived dietary patterns and incident type 2 diabetes mellitus: A systematic review and meta-analysis on prospective observational studies. Public Health Nutrition, 19(2), 230–241. https://doi.org/10.1017/S1368980015001251

Monraz-Méndez, C. A., Escutia-Gutiérrez, R., Rodriguez-Sanabria, J. S., Galicia-Moreno, M., Monroy-Ramírez, H. C., Sánchez-Orozco, L., García-Bañuelos, J., De la Rosa-Bibiano, R., Santos, A., Armendáriz-Borunda, J., & Sandoval-Rodríguez, A. (2022). Moringa oleifera Improves MAFLD by Inducing Epigenetic Modifications. Nutrients, 14(20), 1–19. https://doi.org/10.3390/nu14204225

Nauck, M. A., Quast, D. R., Wefers, J., & Meier, J. J. (2021). GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Molecular Metabolism, 46(October 2020), 101102. https://doi.org/10.1016/j.molmet.2020.101102

Paula, P. C., Oliveira, J. T. A., Sousa, D. O. B., Alves, B. G. T., Carvalho, A. F. U., Franco, O. L., & Vasconcelos, I. M. (2017). Insulin-like plant proteins as potential innovative drugs to treat diabetes—The Moringa oleifera case study. New Biotechnology, 39, 99–109. https://doi.org/10.1016/j.nbt.2016.10.005

Pegah, A., Abbasi-Oshaghi, E., Khodadadi, I., Mirzaei, F., & Tayebinia, H. (2021). Probiotic and resveratrol normalize GLP-1 levels and oxidative stress in the intestine of diabetic rats. Metabolism Open, 10, 100093. https://doi.org/10.1016/j.metop.2021.100093

Popoviciu, M. S., Păduraru, L., Yahya, G., Metwally, K., & Cavalu, S. (2023). Emerging Role of GLP-1 Agonists in Obesity: A Comprehensive Review of Randomised Controlled Trials. International Journal of Molecular Sciences, 24(13). https://doi.org/10.3390/ijms241310449

Singh, A. K., Yadav, D., Sharma, N., & Jin, J. O. (2021). Dipeptidyl peptidase (Dpp)‐iv inhibitors with antioxidant potential isolated from natural sources: A novel approach for the management of diabetes. Pharmaceuticals, 14(6), 1–16. https://doi.org/10.3390/ph14060586

Vargas-Sánchez, K., Garay-Jaramillo, E., & González-Reyes, R. E. (2019). Effects of moringa oleifera on glycaemia and insulin levels: A review of animal and human studies. Nutrients, 11(12), 1–19. https://doi.org/10.3390/nu11122907

Yang, Y., Shi, C.-Y., Xie, J., Dai, J.-H., He, S.-L., & Tian, Y. (2020). Identification of Potential Dipeptidyl Peptidase (DPP)-IV Inhibitors among Moringa oleifera Phytochemicals by Virtual Screening, Molecular Docking Analysis, ADME/T-Based Prediction, and In Vitro Analyses. Molecules (Basel, Switzerland), 25(1), 189. https://doi.org/10.3390/molecules25010189

Zamora-Ros, R., Forouhi, N. G., Sharp, S. J., González, C. A., Buijsse, B., Guevara, M., Van Der Schouw, Y. T., Amiano, P., Boeing, H., Bredsdorff, L., Clavel-Chapelon, F., Fagherazzi, G., Feskens, E. J., Franks, P. W., Grioni, S., Katzke, V., Key, T. J., Khaw, K. T., Kühn, T., … Wareham, N. J. (2013). The association between dietary flavonoid and lignan intakes and incident type 2 diabetes in european populations: The EPIC-InterAct study. Diabetes Care, 36(12), 3961–3970. https://doi.org/10.2337/dc13-0877

Zborowski, V. A., Heck, S. O., Marques, L. S., Bastos, N. K., & Nogueira, C. W. (2021). Memory impairment and depressive-like phenotype are accompanied by downregulation of hippocampal insulin and BDNF signaling pathways in prediabetic mice. Physiology and Behavior, 237(October 2020). https://doi.org/10.1016/j.physbeh.2021.113346

Downloads

Published

2024-06-24

How to Cite

Rusminingsih, E., Susanto, H., Afifah, D. N., Wibowo, J., & Anas, Y. (2024). Effectiveness of Moringa oleifera extract supplementation in increasing Glucagon-like peptide-1 (GLP-1) in prediabetic model. Jurnal Kebidanan Dan Keperawatan Aisyiyah, 20(1), 11–18. https://doi.org/10.31101/jkk.3553

Issue

Section

Original Research

Citation Check