Remote health information systems for falls prevention in older adults at home: a scoping review

Authors

  • Dian Rizki Ramadhani Universitas Gadjah Mada, Indonesia
  • Alfiana Maulida Rahmah Universitas Gadjah Mada, Indonesia
  • Decky Nurhadi Sopyan Universitas Gadjah Mada, Indonesia
  • Novi Rohmawati Universitas Gadjah Mada, Indonesia
  • Putri Ramadhanti Universitas Gadjah Mada, Indonesia
  • Sali Zakiah Muslim Universitas Gadjah Mada, Indonesia

DOI:

https://doi.org/10.31101/jhes.4168

Keywords:

elderly, falls, home, information, technology

Abstract

This review is to describe the remote health information system related to falls in the elderly used at home. We conducted a literature review using the Population Content Context (PCC) method. The databases used include EBSCOHost, Cochrane, and Scopus. The keywords used are (telehealth OR telemedicine OR telenursing OR m-health OR e-health) AND (elderly OR geriatric) AND falls AND home. The article selection process was done with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. As a result, 2.587 publications were identified and screened using the inclusion criteria. The assessment of article quality is conducted through assessment by design and manual assessment. The final result was 18 articles. The results of the article identification discussed the risk of falls, falls prevention, fall events, fear of falls, and response to falls with elderly respondents aged ≥ 55 years. So, there are various types of technologies used, namely sensor-based, phone calls, video conferencing, web, applications, force plates (style plates), tablet computers, smartphones, Artificial Intelligence (AI), and Virtual Reality (VR). The remote health information system has been proven to provide many benefits related to falls on the elderly at home.

Downloads

Download data is not yet available.

References

Bernocchi, P., Giordano, A., Pintavalle, G., Galli, T., Ballini Spoglia, E., Baratti, D., & Scalvini, S. (2019). Feasibility and Clinical Efficacy of a Multidisciplinary Home-Telehealth Program to Prevent Falls in Older Adults: A Randomized Controlled Trial. Journal of the American Medical Directors Association, 20(3), 340–346. https://doi.org/10.1016/j.jamda.2018.09.003

Bevilacqua, R., Maranesi, E., Riccardi, G. R., Di Donna, V., Pelliccioni, P., Luzi, R., Lattanzio, F., & Pelliccioni, G. (2019). Non-immersive virtual reality for rehabilitation of the older people: A systematic review into efficacy and effectiveness. Journal of Clinical Medicine, 8(11), 1–14. https://doi.org/10.3390/jcm8111882

Buisseret, F., Catinus, L., Grenard, R., Jojczyk, L., Fievez, D., Barvaux, V., & Dierick, F. (2020). Timed up and go and six-minute walking tests with wearable inertial sensor: One step further for the prediction of the risk of fall in elderly nursing home people. Sensors (Switzerland), 20(11), 1–15. https://doi.org/10.3390/s20113207

Brucki, S. M. D. (2015). Timed Up and Go test: a simple test gives important information in elderly. Arquivos De Neuro-psiquiatria (Academia Brasileira de Neurologia (ABNEURO)), 73(3), 185-186. https://doi.org/10.1590/0004-282X20140243

Das, J., Kutum, T., Deori, C., & Deori, R. (2024). TELEHEALTH TECHNOLOGY AND HEALTHCARE. Futuristic Trends in Biotechnology, Volume 3, Book 10, Part 2, Chapter 7. https://doi.org/10.58532/v3bfbt10p2ch7

Delbaere, K., Valenzuela, T., Lord, S. R., Clemson, L., Zijlstra, G. A. R., Close, J. C. T., Lung, T., Woodbury, A., Chow, J., McInerney, G., Miles, L., Toson, B., Briggs, N., & Van Schooten, K. S. (2021). E-health StandingTall balance exercise for fall prevention in older people: Results of a two year randomised controlled trial. The BMJ, 373. https://doi.org/10.1136/bmj.n740

Elbaz, S., Cinalioglu, K., Sekhon, K., Gruber, J., Rigas, C., Bodenstein, K., Naghi, K., Lavin, P., Greenway, K. T., Vahia, I., Rej, S., & Sekhon, H. (2021). A Systematic Review of Telemedicine for Older Adults With Dementia During COVID-19: An Alternative to In-person Health Services? Frontiers in Neurology, 12(December). https://doi.org/10.3389/fneur.2021.761965

Falzon, D., Temesgen, Z., & Story, A. (2023). Digital Technology for Global Health. In Sustainable Development Goals Series (pp. 383-387). Springer International Publishing. https://doi.org/10.1007/978-3-031-33851-9_58

Gallamini, M., Piastra, G., Lucarini, S., Porzio, D., Ronchi, M., Pirino, A., Scoppa, F., Masiero, S., & Tognolo, L. (2021). Revisiting the instrumented romberg test: Can today’s technology offer a risk-of-fall screening device for senior citizens? an experience-based approach. Life, 11(2), 1–20. https://doi.org/10.3390/life11020161

Gaspar, A. G. M., & Lapão, L. V. (2022). A Digital Health Service for Elderly People with Balance Disorders and Risk of Falling: A Design Science Approach. International Journal of Environmental Research and Public Health, 19(3). https://doi.org/10.3390/ijerph19031855

Goldsack, J. C., & Zanetti, C. A. (2020). Defining and Developing the Workforce Needed for Success in the Digital Era of Medicine. Digital Biomarkers, 4(suppl 1), 136–142. https://doi.org/10.1159/000512382

Greene, B. R., McManus, K., Ader, L. G. M., & Caulfield, B. (2021). Article unsupervised assessment of balance and falls risk using a smartphone and machine learning. Sensors, 21(14), 4770. https://doi.org/10.3390/s21144770

Hamm, J., Money, A. G., & Atwal, A. (2019). Enabling older adults to carry out paperless falls-risk self-assessments using guidetomeasure-3D: A mixed methods study. Journal of Biomedical Informatics, 92. https://doi.org/10.1016/j.jbi.2019.103135

Heponiemi, T., Jormanainen, V., Leemann, L., Manderbacka, K., Aalto, A. M., & Hyppönen, H. (2020). Digital divide in perceived benefits of online health care and social welfare services: National cross-sectional survey study. Journal of Medical Internet Research, 22(7). https://doi.org/10.2196/17616

Howcroft, J., Lemaire, E. D., & Kofman, J. (2016). Wearable-sensor-based classification models of faller status in older adults. PLoS ONE, 11(4), 1–16. https://doi.org/10.1371/journal.pone.0153240

Hughes, K. J., Salmon, N., Galvin, R., Casey, B., & Clifford, A. M. (2019). Interventions to improve adherence to exercise therapy for falls prevention in community-dwelling older adults: Systematic review and meta-analysis. Age and Ageing, 48(2), 185–195. https://doi.org/10.1093/ageing/afy164

Julianto, E. K., Mufidah, A., & Adha, E. A. H. (2022). Hubungan Tingkat Aktivitas Sehari Hari dengan Resiko Jatuh pada Lansia di Desa Tulung Rejo Kecamatan Trucuk Kabupaten Bojonegoro. Jurnal Ilmu Kesehatan MAKIA, 12(2), 135–139.

Jun, W. (2020). A study on the current status and improvement of the digital divide among older people in Korea. International Journal of Environmental Research and Public Health, 17(11), 1–13. https://doi.org/10.3390/ijerph17113917

Kim, H. S., Kwon, I. H., & Cha, W. C. (2021). Future and development direction of digital healthcare. Healthcare Informatics Research, 27(2), 95–101. https://doi.org/10.4258/HIR.2021.27.2.95

Lacroix, A., Kressig, R. W., Muehlbauer, T., Gschwind, Y. J., Pfenninger, B., Bruegger, O., & Granacher, U. (2016). Effects of a supervised versus an unsupervised combined balance and strength training program on balance and muscle power in healthy older adults: A randomized controlled trial. Gerontology, 62(3), 275–288. https://doi.org/10.1159/000442087

Li, F., Harmer, P., Voit, J., & Chou, L.-S. (2021). Implementing an online virtual falls prevention intervention during a public health pandemic for older adults with mild cognitive impairment: A feasibility trial. Clinical Interventions in Aging, 16, 973 – 983. https://doi.org/10.2147/CIA.S306431

Mansson, L., Lundin-Olsson, L., Skelton, D. A., Janols, R., Lindgren, H., Rosendahl, E., & Sandlund, M. (2020). Older adults’ preferences for, adherence to and experiences of two self-management falls prevention home exercise programmes: A comparison between a digital programme and a paper booklet. BMC Geriatrics, 20(1). https://doi.org/10.1186/s12877-020-01592-x

Maranesi, E., Casoni, E., Baldoni, R., Barboni, I., Rinaldi, N., Tramontana, B., Amabili, G., Benadduci, M., Barbarossa, F., Luzi, R., Di Donna, V., Scendoni, P., Pelliccioni, G., Lattanzio, F., Riccardi, G. R., & Bevilacqua, R. (2022). The Effect of Non-Immersive Virtual Reality Exergames versus Traditional Physiotherapy in Parkinson’s Disease Older Patients: Preliminary Results from a Randomized-Controlled Trial. International Journal of Environmental Research and Public Health, 19(22). https://doi.org/10.3390/ijerph192214818

Matchar, D. B., Duncan, P. W., Lien, C. T., Ong, M. E. H., Lee, M., Gao, F., Sim, R., & Eom, K. (2017). Randomized Controlled Trial of Screening, Risk Modification, and Physical Therapy to Prevent Falls Among the Elderly Recently Discharged From the Emergency Department to the Community: The Steps to Avoid Falls in the Elderly Study. Archives of Physical Medicine and Rehabilitation, 98(6), 1086–1096. https://doi.org/10.1016/j.apmr.2017.01.014

McGarrigle, L., Boulton, E., & Todd, C. (2020). Map the apps: a rapid review of digital approaches to support the engagement of older adults in strength and balance exercises. BMC Geriatrics, 20(1), 1–11. https://doi.org/10.1186/s12877-020-01880-6

Musril, H. A., Jasmienti, J., & Hurrahman, M. (2020). Implementasi Teknologi Virtual Reality Pada Media Pembelajaran Perakitan Komputer. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 9(1), 83. https://doi.org/10.23887/janapati.v9i1.23215

Oliveira-Zmuda, G. G., Soldera, C. L. C., Jovanov, E., & Bós, Â. J. G. (2022). Timed Up and Go test phases as predictors of future falls in community-dwelling older adults. SciELO journals. https://doi.org/https://doi.org/10.6084/m9.figshare.21383151.v1

Orton, M., Agarwal, S., Muhoza, P., Vasudevan, L., & Vu, A. (2018). Strengthening delivery of health services using digital devices. Global Health Science and Practice, 6, S61–S71. https://doi.org/10.9745/GHSP-D-18-00229

Palestra, G., Rebiai, M., Courtial, E., & Koutsouris, D. (2018). Evaluation of a rehabilitation system for the elderly in a day care center. Information (Switzerland), 10(1), 1–14. https://doi.org/10.3390/info10010003

Pedrero-Sánchez, J. F., De-Rosario-Martínez, H., Medina-Ripoll, E., Garrido-Jaén, D., Serra-Añó, P., Mollà-Casanova, S., & López-Pascual, J. (2023). The Reliability and Accuracy of a Fall Risk Assessment Procedure Using Mobile Smartphone Sensors Compared with a Physiological Profile Assessment. Sensors, 23(14). https://doi.org/10.3390/s23146567

Pettersson, B., Wiklund, M., Janols, R., Lindgren, H., Lundin-Olsson, L., Skelton, D. A., & Sandlund, M. (2019). ’Managing pieces of a personal puzzle’-Older people’s experiences of self-management falls prevention exercise guided by a digital program or a booklet. BMC Geriatrics, 19(1). https://doi.org/10.1186/s12877-019-1063-9

Pfeiffer, K., Kampe, K., Klenk, J., Rapp, K., Kohler, M., Albrecht, D., Büchele, G., Hautzinger, M., Taraldsen, K., & Becker, C. (2020). Effects of an intervention to reduce fear of falling and increase physical activity during hip and pelvic fracture rehabilitation. Age and Ageing, 49(5), 771 – 778. https://doi.org/10.1093/ageing/afaa050

Qiu, H., Rehman, R. Z. U., Yu, X., & Xiong, S. (2018). Application of Wearable Inertial Sensors and A New Test Battery for Distinguishing Retrospective Fallers from Non-fallers among Community-dwelling Older People. Scientific Reports, 8(1), 1. https://doi.org/10.1038/s41598-018-34671-6

Ricciardi, W., Pita Barros, P., Bourek, A., Brouwer, W., Kelsey, T., Lehtonen, L., Anastasy, C., Barry, M., De Maeseneer, J., Kringos, D., McKee, M., Murauskiene, L., Nuti, S., Siciliani, L., & Wild, C. (2019). How to govern the digital transformation of health services. European Journal of Public Health, 29, 7–12. https://doi.org/10.1093/eurpub/ckz165

Sachdeva, S., & Ali, A. (2022). Rise of Telemedicine in Healthcare Systems Using Machine Learning: A Key Discussion. In K. Sharma, Y. Gigras, V. Sharma, D. J. Hemanth, & R. C. Poonia (Eds.), Internet of Healthcare Things: Machine Learning for Security and Privacy (pp. 113-130). https://doi.org/https://doi.org/10.1002/9781119792468.ch6

Sadura-Sieklucka, T., Czerwosz, L. T., Kądalska, E., Kożuchowski, M., Księżopolska-Orłowska, K., & Targowski, T. (2023). Is Balance Training Using Biofeedback Effective in the Prophylaxis of Falls in Women over the Age of 65? Brain Sciences, 13(4). https://doi.org/10.3390/brainsci13040629

Sari, Y. M., Burton, E., Lee, D.-C. A., & Hill, K. D. (2023). A Telehealth Home-Based Exercise Program for Community-Dwelling Older People with Dementia in Indonesia: A Feasibility Study. International Journal of Environmental Research and Public Health, 20(4). https://doi.org/10.3390/ijerph20043397

Sherrington, C., Fairhall, N. J., Wallbank, G. K., Tiedemann, A., Michaleff, Z. A., Howard, K., Clemson, L., Hopewell, S., & Lamb, S. E. (2019). Exercise for preventing falls in older people living in the community. Cochrane Database of Systematic Reviews, 2019(1). https://doi.org/10.1002/14651858.CD012424.pub2

Suttanon, P., Hill, K. D., Said, C. M., Williams, S. B., Byrne, K. N., Logiudice, D., Lautenschlager, N. T., & Dodd, K. J. (2013). Feasibility, safety and preliminary evidence of the effectiveness of a home-based exercise programme for older people with Alzheimer’s disease: A pilot randomized controlled trial. Clinical Rehabilitation, 27(5), 427–438. https://doi.org/10.1177/0269215512460877

The Joint Commission. (2015). Preventing falls and fall-related injuries in health care facilities.

Tjahyanti, L. P. A. S., Saputra, P. S., & Gitakarma, M. S. (2022). Peran artificial intelligence (AI) untuk mendukung pembelajaran di masa pandemi covid-19 [The role of artificial intelligence (AI) to support learning during the covid-19 pandemic]. Jurnal Komputer Dan Teknologi Sains (KOMTEKS), 1(1), 16–17.

Tomita, M. R., Fisher, N. M., Ramsey, D., Stanton, K., & Naughton, B. J. (2019). Follow-Up of a Virtual-Group-Exercise at Home Program to Reduce Fall Risks. Journal of the American Geriatrics Society, 67(9), 1981–1983. https://doi.org/10.1111/jgs.15992

Tossaint-Schoenmakers, R., Versluis, A., Chavannes, N., Talboom-Kamp, E., & Kasteleyn, M. (2021). The challenge of integrating eHealth into health care: Systematic literature review of the donabedian model of structure, process, and outcome. Journal of Medical Internet Research, 23(5). https://doi.org/10.2196/27180

Trenerry, B., Chng, S., Wang, Y., Suhaila, Z. S., Lim, S. S., Lu, H. Y., & Oh, P. H. (2021). Preparing Workplaces for Digital Transformation: An Integrative Review and Framework of Multi-Level Factors. Frontiers in Psychology, 12(March), 1–24. https://doi.org/10.3389/fpsyg.2021.620766

Uzor, S., & Baillie, L. (2019). RECOv-R: Evaluation of a home-based tailored exergame system to reduce fall risk in seniors. ACM Transactions on Computer-Human Interaction, 26(4). https://doi.org/10.1145/3325280

Valenzuela, T., Okubo, Y., Woodbury, A., Lord, S. R., & Delbaere, K. (2018). Adherence to Technology-Based Exercise Programs in Older Adults: A Systematic Review. Journal of Geriatric Physical Therapy, 41(1), 49–61. https://doi.org/10.1519/JPT.0000000000000095

Van Vugt, V. A., Van Der Wouden, J. C., Essery, R., Yardley, L., Twisk, J. W. R., Van Der Horst, H. E., & Maarsingh, O. R. (2019). Internet based vestibular rehabilitation with and without physiotherapy support for adults aged 50 and older with a chronic vestibular syndrome in general practice: Three armed randomised controlled trial. The BMJ, 367, 1–11. https://doi.org/10.1136/bmj.l5922

Wardhana, N. J., Arthana, I. K. R., & Divayana, D. G. H. (2019). Pengembangan Aplikasi Virtual Reality 3D Pengenalan Manusia Purba Bangsa Indonesia untuk SMA Kelas X (Studi Kasus SMA Negeri 2 Singaraja). Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 8(2), 109. https://doi.org/10.23887/janapati.v8i2.17714

Watson, P., Bearpark, T., & Ling, J. (2021). The impact of rapid response and telecare services on elderly and vulnerable residents. Health and Social Care in the Community, 29(4), 897–904. https://doi.org/10.1111/hsc.13123

World Health Organization. (2021). Falls. https://www.who.int/news-room/fact-sheets/detail/falls

World Health Organization. (2023). Patient safety. https://www.who.int/news-room/fact-sheets/detail/patient-safety

Wynn, R., Gabarron, E., Johnsen, J. A. K., & Traver, V. (2020). Special issue on e-health services. International Journal of Environmental Research and Public Health, 17(8). https://doi.org/10.3390/ijerph17082885

Yi, D., & Yim, J. (2021). Remote Home-Based Exercise Program to Improve the Mental State, Balance, and Physical Function and Prevent Falls in Adults Aged 65 Years and Older during the COVID-19 Pandemic in Seoul, Korea. Medical Science Monitor, 27. https://doi.org/10.12659/MSM.935496

Downloads

Published

2025-09-02

Issue

Section

Scoping Review

Citation Check

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.