Detection of SARS-CoV-2 from Indonesia with colorimetric saliva based RT-LAMP method using thermal cycler

Authors

  • Arif Bimantara Universitas 'Aisyiyah Yogyakarta
  • Ika Afifah Nugraheni Universitas 'Aisyiyah Yogyakarta
  • Luluk Rosida Universitas 'Aisyiyah Yogyakarta
  • Tasya Muliasari Universitas 'Aisyiyah Yogyakarta

DOI:

https://doi.org/10.31101/ijhst.v4i2.2841
Abstract views 262 times

Keywords:

colorimetric, COVID-19, RT-LAMP, saliva, thermal cycler

Abstract

Coronavirus disease 2019 (COVID-19) is an acute respiratory syndrome disease caused by the SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2). This virus has mutations that cause its transmission to speed up so it requires a fast detection method to prevent such transmission. The detection method that becomes gold standard is RT-qPCR (reverse transcription-quantitative polymerase chain reaction). The disadvantage of the RT-qPCR method is that the long detection time and nasopharyngeal swab sampling cause discomfort in the patient. One alternative method of detection of the SARS-CoV-2 virus is colorimetric saliva based RT-LAMP (reverse transcription loop-mediated isothermal amplification). The advantage of the RT-LAMP method is that it is fast and accurate. The purpose of this study is to determine the ability of the RT-LAMP saliva-based colorimetric method to use thermal cyclers as an alternative to SARS-CoV-2 detection in Indonesia. This study used the primary design of SARS-CoV-2 Indonesia. The samples used were positive and negative saliva for COVID-19 based on RT-qPCR test results from PKU Muhammadiyah Hospital, Yogyakarta City. The research stages include optimization of RT-LAMP conditions, saliva sampling followed by colorimetric visualization of results and electrophoresis. Colorimetric testing was carried out with the addition of phenol red and observed a change in color from pink to yellow. The results showed that RT-LAMP can run optimally at 65 °C for 45 minutes. Colorimetric RT-LAMP testing in this study was ineffective because it could not detect positive samples compared to electrophoresis results. Factors that cause this include a small number of amplicons, incompatible RT-LAMP reagents used for colorimetric methods using phenol red, and phenol red which cannot work optimally so that it requires a new or more appropriate pH indicator. It is necessary to conduct further research by replacing other visualization methods such as replacing pH indicators or by fluorescence methods. 

References

Amaral, C., Antunes, W., Moe, E., Duarte, A. G., Lima, L. M. P., Santos, C., Gomes, I. L., Afonso, G. S., Vieira, R., Teles, H. S. S., Reis, M. S., da Silva, M. A. R., Henriques, A. M., Fevereiro, M., Ventura, M. R., Serrano, M., & Pimentel, C. (2021). A molecular test based on RT-LAMP for rapid, sensitive and inexpensive colorimetric detection of SARS-CoV-2 in clinical samples. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-95799-6

Aoki, M. N., de Oliveira Coelho, B., Góes, L. G. B., Minoprio, P., Durigon, E. L., Morello, L. G., Marchini, F. K., Riediger, I. N., do Carmo Debur, M., Nakaya, H. I., & Blanes, L. (2021). Colorimetric RT-LAMP SARS-CoV-2 diagnostic sensitivity relies on color interpretation and viral load. Scientific Reports, 11(1), 1–10. https://doi.org/10.1038/s41598-021-88506-y

Corstjens, P. L. A. M., Abrams, W. R., & Malamud, D. (2016). Saliva and viral infections. Periodontology 2000, 70(1), 93–110. https://doi.org/10.1111/prd.12112

dos Santos, C. A., de Oliveira, K. G., Mendes, G. M., Silva, L. C., de Souza, M. N., Estrela, P. F. N., Guimarães, R. A., Silveira-Lacerda, E. P., & Duarte, G. R. M. (2021). Detection of SARS-CoV-2 in Saliva by RT-LAMP During a Screening of Workers in Brazil, Including Pre-Symptomatic Carriers. Journal of the Brazilian Chemical Society, 32(11), 2071–2077. https://doi.org/10.21577/0103-5053.20210098

Faria, N. R., Mellan, T. A., Whittaker, C., Claro, I. M., Candido, D. da S., Mishra, S., Crispim, M. A. E., Sales, F. C. S., Hawryluk, I., McCrone, J. T., Hulswit, R. J. G., Franco, L. A. M., Ramundo, M. S., de Jesus, J. G., Andrade, P. S., Coletti, T. M., Ferreira, G. M., Silva, C. A. M., Manuli, E. R., … Sabino, E. C. (2021). Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science, 372(6544), 815–821. https://doi.org/10.1126/science.abh2644

Guna, A. R. (2020). Peranan Saliva Dalam Mendeteksi Corona Virus Disease (Covid)-19: Kajian Literatur.

He, Y., Xie, T., & Tong, Y. (2021). Rapid and highly sensitive one-tube colorimetric RT-LAMP assay for visual detection of SARS-CoV-2 RNA. Biosensors and Bioelectronics. https://doi.org/10.1016/j.bios.2021.113330

Huang, W. E., Lim, B., Hsu, C. C., Xiong, D., Wu, W., Yu, Y., Jia, H., Wang, Y., Zeng, Y., Ji, M., Chang, H., Zhang, X., Wang, H., & Cui, Z. (2020). RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microbial Biotechnology, 13(4), 950–961. https://doi.org/10.1111/1751-7915.13586

Iacobucci, G. (2021). Covid-19: New UK variant may be linked to increased death rate, early data indicate. BMJ, n230. https://doi.org/10.1136/bmj.n230

Janíková, M., Hodosy, J., Boor, P., Klempa, B., & Celec, P. (2021). Loop-mediated isothermal amplification for the detection of SARS-CoV-2 in saliva. Microbial Biotechnology, 14(1), 307–316. https://doi.org/10.1111/1751-7915.13737

Jaroenram, W., Chatnuntawech, I., Kampeera, J., Pengpanich, S., Leaungwutiwong, P., Tondee, B., Sirithammajak, S., Suvannakad, R., Khumwan, P., Dangtip, S., Arunrut, N., Bantuchai, S., Nguitragool, W., Wongwaroran, S., Khanchaitit, P., Sattabongkot, J., Teerapittayanon, S., & Kiatpathomchai, W. (2022). One-step colorimetric isothermal detection of COVID-19 with AI-assisted automated result analysis: A platform model for future emerging point-of-care RNA/DNA disease diagnosis. Talanta, 249(March), 123375. https://doi.org/10.1016/j.talanta.2022.123375

Lalli, M. A., Langmade, J. S., Chen, X., Fronick, C. C., Sawyer, C. S., Burcea, L. C., Wilkinson, M. N., Fulton, R. S., Heinz, M., Buchser, W. J., Head, R. D., Mitra, R. D., & Milbrandt, J. (2021). Rapid and Extraction-Free Detection of SARS-CoV-2 from Saliva by Colorimetric Reverse-Transcription Loop-Mediated Isothermal Amplification. Clinical Chemistry, 67(2), 415–424. https://doi.org/10.1093/clinchem/hvaa267

Landry, M. L., Criscuolo, J., & Peaper, D. R. (2020). Challenges in use of saliva for detection of SARS CoV-2 RNA in symptomatic outpatients. Journal of Clinical Virology, 130. https://doi.org/10.1016/j.jcv.2020.104567

Leber, W., Lammel, O., Redlberger-Fritz, M., Mustafa-Korninger, M. E., Glehr, R. C., Camp, J., Agerer, B., Lercher, A., Popa, A., Genger, J. W., Penz, T., Aberle, S., Bock, C., Bergthaler, A., Stiasny, K., Hochstrasser, E. M., Hoellinger, C., Siebenhofer, A., Griffiths, C., & Panovska-Griffiths, J. (2021). Rapid, early and accurate SARS-CoV-2 detection using RT-qPCR in primary care: A prospective cohort study (REAP-1). BMJ Open, 11(8), 1–10. https://doi.org/10.1136/bmjopen-2020-045225

Li, J., Hu, X., Wang, X., Yang, J., Zhang, L., Deng, Q., Zhang, X., Wang, Z., Hou, T., & Li, S. (2021). A novel One-pot rapid diagnostic technology for COVID-19. Analytica Chimica Acta, 1154(January). https://doi.org/10.1016/j.aca.2021.338310

Matic, N., Lawson, T., Ritchie, G., Stefanovic, A., Leung, V., Champagne, S., Romney, M. G., & Lowe, C. F. (2021). Automated molecular testing of saliva for SARS-CoV-2 detection. Diagnostic Microbiology and Infectious Disease, 100(1), 1–10. https://doi.org/10.1016/j.diagmicrobio.2021.115324

Morais, O. M., Azevedo Alves, M. R., & Fernandes, P. A. D. C. (2022). Impact of thermal pretreatment of saliva on the RT-PCR detection of SARS-CoV-2. Advances in Virology, 2022. https://doi.org/10.1155/2022/744290

Ott, I. M., Strine, M. S., Watkins, A. E., Boot, M., Kalinich, C. C., Harden, C. A., Vogels, C. B. F., Casanovas-Massana, A., Moore, A. J., Muenker, M. C., Nakahata, M., Tokuyama, M., Nelson, A., Fournier, J., Bermejo, S., Campbell, M., Datta, R., Cruz, C. S. D., Farhadian, S. F., Wyllie, A. L. (2021). Stability of SARS-CoV-2 RNA in nonsupplemented saliva. Emerging Infectious Diseases, 27(4), 1146–1150. https://doi.org/10.3201/eid2704.204199

Reynés, B., Serra, F., & Palou, A. (2021). Rapid visual detection of SARS-CoV-2 by colorimetric loop-mediated isothermal amplification. BioTechniques, 70(4), 219–226. https://doi.org/10.2144/BTN-2020-0159

SATGAS COVID. (2022). COVID-19. https://covid19.go.id/id. Diakses tanggal 16 November 2022.

Tanner, N. A., Zhang, Y., & Evans, T. C. (2015). Visual detection of isothermal nucleic acid amplification using pH-sensitive dyes. BioTechniques, 58(2), 59–68. https://doi.org/10.2144/000114253

Tegally, H., Wilkinson, E., Giovanetti, M., Iranzadeh, A., Fonseca, V., Giandhari, J., Doolabh, D., Pillay, S., San, E. J., Msomi, N., Mlisana, K., von Gottberg, A., Walaza, S., Allam, M., Ismail, A., Mohale, T., Glass, A. J., Engelbrecht, S., van Zyl, G., … de Oliveira, T. (2020). Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. In medRxiv. https://doi.org/10.1101/2020.12.21.20248640

Thai, H. T. C., Le, M. Q., Vuong, C. D., Parida, M., Minekawa, H., Notomi, T., Hasebe, F., & Morita, K. (2004). Development and Evaluation of a Novel Loop-Mediated Isothermal Amplification Method for Rapid Detection of Severe Acute Respiratory Syndrome Coronavirus. Journal of Clinical Microbiology, 42(5), 1956–1961. https://doi.org/10.1128/JCM.42.5.1956-1961.2004

Torjesen, I. (2021). Covid-19: Delta variant is now UK’s most dominant strain and spreading through schools. BMJ, n1445. https://doi.org/10.1136/bmj.n1445

Wall, E. C., Wu, M., Harvey, R., Kelly, G., Warchal, S., Sawyer, C., Daniels, R., Hobson, P., Hatipoglu, E., Ngai, Y., Hussain, S., Nicod, J., Goldstone, R., Ambrose, K., Hindmarsh, S., Beale, R., Riddell, A., Gamblin, S., Howell, M., … Bauer, D. L. (2021). Neutralising antibody activity against SARS-CoV-2 VOCs B.1.617.2 and B.1.351 by BNT162b2 vaccination. The Lancet, 397(10292), 2331–2333. https://doi.org/10.1016/S0140-6736(21)01290-3

WHO. (2020). How does COVID-19 spread?. https.//www.who.int/newsr oom/q a-detail/q-acoronaviruses. Diakses tanggal 16 November 2022.

Wu, C. rong, Yin, W. chao, Jiang, Y., & Xu, H. E. (2022). Structure genomics of SARS-CoV-2 and its Omicron variant: drug design templates for COVID-19. Acta Pharmacologica Sinica, October 2021. https://doi.org/10.1038/s41401-021-00851-w

Wyllie, A. L., Fournier, J., Casanovas-Massana, A., Campbell, M., Tokuyama, M., Vijayakumar, P., Geng, B., Muenker, M. C., Moore, A. J., Vogels, C. B. F., Petrone, M. E., Ott, I. M., Lu, P., Venkataraman, A., Lu-Culligan, A., Klein, J., Earnest, R., Simonov, M., Datta, R., … Ko, A. I. (2020). Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs. MedRxiv. https://doi.org/10.1101/2020.04.16.20067835

Xu, J., Zhao, S., Teng, T., Abdalla, A. E., Zhu, W., Xie, L., Wang, Y., & Guo, X. (2020). Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses, 12(2), 244. https://doi.org/10.3390/v12020244

Yu, L., Wu, S., Hao, X., Dong, X., Mao, L., Pelechano, V., Chen, W.-H., & Yin, X. (2020). Rapid Detection of COVID-19 Coronavirus Using a Reverse Transcriptional Loop-Mediated Isothermal Amplification (RT-LAMP) Diagnostic Platform. Clinical Chemistry, 66(7), 975–977. https://doi.org/10.1093/clinchem/hvaa102

Downloads

Published

2022-11-25

How to Cite

Bimantara, A., Nugraheni, I. A., Rosida, L., & Muliasari, T. (2022). Detection of SARS-CoV-2 from Indonesia with colorimetric saliva based RT-LAMP method using thermal cycler. International Journal of Health Science and Technology, 4(2), 174–183. https://doi.org/10.31101/ijhst.v4i2.2841

Issue

Section

Articles

SHARE THIS

Most read articles by the same author(s)