Immunosensor fabrication methods: A scoping review

Authors

  • Fajar Ajinugroho Universitas Indonesia
  • Tomy Abuzairi Universitas Indonesia
  • Siti Fauziyah Universitas Indonesia

DOI:

https://doi.org/10.31101/jhes.2531
Abstract views 322 times

Keywords:

electrochemical characterization, electrode modification, immunosensor, linear range, limit of detection

Abstract

Various methods of establishing a diagnosis, especially for initial diagnosis, have been widely developed, such as Rapid Diagnostic Test (RDT), Enzyme-linked immunosorbent assay (ELISA), and polymerase chain reaction (PCR). However, those tools have several different limitations in each tool. The limitations of this tool include a fairly high error rate and the need for complex tools. The work can only be used by special personnel and a long processing time. Immunosensors are tools that can be used as an alternative. Immunosensor is a sensor used to detect specific immune reactions between antibodies and targets in the form of antigens and can detect interactions between analyte targets and antibodies from changes in electrochemical signal, sot the examination time is relatively faster. This scoping review aims to review each immunosensor fabrication parameter. The results proved that each analyte has a different characterization and is very diverse. So it is necessary to select the right parameters (electrode type, immunoassay configuration, electrode modification, receptor immobilization, and electrochemical characterization). The linear range and detection limit are also important parameters that can be developed so that very limited analyte concentrations in the sample can be detected. It is necessary to review fabrication methods to improve the stability of immunosensors so that the ligands contained in the immunosensor electrodes can last a long time to be able to carry out mass production.

Author Biography

Fajar Ajinugroho, Universitas Indonesia

Mahasiswa Program Magister Teknologi Biomedik

References

Alizadeh, N., Hallaj, R., & Salimi, A. (2018). Dual Amplified Electrochemical Immunosensor for Hepatitis B Virus Surface Antigen Detection Using Hemin/G-Quadruplex Immobilized onto Fe3O4-AuNPs or (Hemin-Amino-rGO-Au) Nanohybrid. Electroanalysis, 30(3), 402–414. https://doi.org/10.1002/elan.201700727

Alizadeh, T., Ganjali, M. R., Akhoundian, M., & Norouzi, P. (2016). Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes. Microchimica Acta, 183(3), 1123–1130. https://doi.org/10.1007/s00604-015-1702-6

Aydin, M., Aydin, E. B., & Sezgintürk, M. K. (2021). Advances in immunosensor technology. Advances in clinical chemistry, 102, 1–62. https://doi.org/10.1016/bs.acc.2020.08.001

Bonini, A., Poma, N., Vivaldi, F., Kirchhain, A., Salvo, P., Bottai, D., Tavanti, A., & Di Francesco, F. (2021). Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. Journal of Pharmaceutical and Biomedical Analysis, 192, 113645. https://doi.org/10.1016/j.jpba.2020.113645

Bujes-Garrido, J., Izquierdo-Bote, D., Heras, A., Colina, A., & Arcos-Martínez, M. J. (2018). Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Analytica Chimica Acta, 1012, 42–48. https://doi.org/10.1016/j.aca.2018.01.063

Burcu Bahadır, E., & Kemal Sezgintürk, M. (2015). Applications of electrochemical immunosensors for early clinical diagnostics. Talanta, 132, 162–174. https://doi.org/10.1016/j.talanta.2014.08.063

Castrovilli, M. C., Bolognesi, P., Chiarinelli, J., Avaldi, L., Cartoni, A., Calandra, P., Tempesta, E., Giardi, M. T., Antonacci, A., Arduini, F., & Scognamiglio, V. (2020). Electrospray deposition as a smart technique for laccase immobilisation on carbon black-nanomodified screen-printed electrodes. Biosensors and Bioelectronics, 163, 112299. https://doi.org/10.1016/j.bios.2020.112299

Chen, P., Hua, X., Liu, J., Liu, H., Xia, F., Tian, D., & Zhou, C. (2019). A dual amplification electrochemical immunosensor based on HRP-Au@Ag NPs for carcinoembryonic antigen detection. Analytical Biochemistry, 574, 23–30. https://doi.org/10.1016/j.ab.2019.03.003

Chen, Z.-G. (2008). Conductometric immunosensors for the detection of staphylococcal enterotoxin B based bio-electrocalytic reaction on micro-comb electrodes. Bioprocess and Biosystems Engineering, 31(4), 345–350. https://doi.org/10.1007/s00449-007-0168-2

Chevaliez, S., & Pawlotsky, J.-M. (2018). New virological tools for screening, diagnosis and monitoring of hepatitis B and C in resource-limited settings. Journal of Hepatology, 69. https://doi.org/10.1016/j.jhep.2018.05.017

Chou, T.-C., Wu, K.-Y., Hsu, F.-X., & Lee, C.-K. (2018). Pt-MWCNT modified carbon electrode strip for rapid and quantitative detection of H2O2 in food. Journal of Food and Drug Analysis, 26(2), 662–669. https://doi.org/10.1016/j.jfda.2017.08.005

Cimafonte, M., Fulgione, A., Gaglione, R., Papaianni, M., Capparelli, R., Arciello, A., Bolletti Censi, S., Borriello, G., Velotta, R., & Della Ventura, B. (2020). Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water. Sensors, 20(1), Article 1. https://doi.org/10.3390/s20010274

Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x

Dai, L., Li, Y., Wang, Y., Luo, X., Wei, D., Feng, R., Yan, T., Ren, X., Du, B., & Wei, Q. (2019). A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosensors and Bioelectronics, 132, 97–104. https://doi.org/10.1016/j.bios.2019.02.055

Daniels, J. S., & Pourmand, N. (2007). Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis, 19(12), 1239–1257. https://doi.org/10.1002/elan.200603855

Dides, M., Hernández, J., & Olivares, L. (2021). Uranium tetrafluoride production using the dropping mercury electrode. Journal of Fluorine Chemistry, 246, 109773. https://doi.org/10.1016/j.jfluchem.2021.109773

Ding, J., & Qin, W. (2020). Recent advances in potentiometric biosensors. TrAC Trends in Analytical Chemistry, 124, 115803. https://doi.org/10.1016/j.trac.2019.115803

Duran, B. G., Castañeda, E., & Armijo, F. (2019). Development of an electrochemical impedimetric immunosensor for Corticotropin Releasing Hormone (CRH) using half-antibody fragments as elements of biorecognition. Biosensors and Bioelectronics, 131, 171–177. https://doi.org/10.1016/j.bios.2019.02.017

Emir, G., Dilgin, Y., Ramanaviciene, A., & Ramanavicius, A. (2021). Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchemical Journal, 161, 105751. https://doi.org/10.1016/j.microc.2020.105751

Figueiredo, A., Vieira, N. C. S., dos Santos, J. F., Janegitz, B. C., Aoki, S. M., Junior, P. P., Lovato, R. L., Nogueira, M. L., Zucolotto, V., & Guimarães, F. E. G. (2015). Electrical Detection of Dengue Biomarker Using Egg Yolk Immunoglobulin as the Biological Recognition Element. Scientific Reports, 5(1), Article 1. https://doi.org/10.1038/srep07865

Fukushima, K., Momose, M., Kanaya, K., Kaimoto, Y., Higuchi, T., Yamamoto, A., Nakao, R., Matsuo, Y., Nagao, M., Kuji, I., & Abe, K. (2021). Imaging of Heart Type Fatty Acid Binding Protein Under Acute Reperfusion Ischemia Using Radio-labeled Antibody in Rat Heart Model. Annals of Nuclear Cardiology, advpub, 21–00146. https://doi.org/10.17996/anc.21-00146

Gandhi, S., Suman, P., Kumar, A., Sharma, P., Capalash, N., & Suri, C. R. (2015). Recent advances in immunosensor for narcotic drug detection. BioImpacts: BI, 5(4), 207–213. https://doi.org/10.15171/bi.2015.30

Gao, Z., Li, Y., Zhang, X., Feng, J., Kong, L., Wang, P., Chen, Z., Dong, Y., & Wei, Q. (2018). Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2@MWCNTs nanocomposite as enzyme-mimetic labels. Biosensors and Bioelectronics, 102, 189–195. https://doi.org/10.1016/j.bios.2017.11.032

García, M., & Escarpa, A. (2012). A class-selective and reliable electrochemical monosaccharide index in honeys, as determined using nickel and nickel-copper nanowires. Analytical and Bioanalytical Chemistry, 402(2), 945–953. https://doi.org/10.1007/s00216-011-5453-x

Gatselou, V. A., Giokas, D. L., Vlessidis, A. G., & Prodromidis, M. I. (2015). Rhodium nanoparticle-modified screen-printed graphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence of oxygen. Talanta, 134, 482–487. https://doi.org/10.1016/j.talanta.2014.11.033

Giannetto, M., Costantini, M., Mattarozzi, M., & Careri, M. (2017). Innovative gold-free carbon nanotube/chitosan-based competitive immunosensor for determination of HIV-related p24 capsid protein in serum. RSC Adv., 7, 39970–39976. https://doi.org/10.1039/C7RA07245G

Giannetto, M., Mattarozzi, M., Umiltà , E., Manfredi, A., Quaglia, S., & Careri, M. (2014). An amperometric immunosensor for diagnosis of celiac disease based on covalent immobilization of open conformation tissue transglutaminase for determination of anti-tTG antibodies in human serum. Biosensors and Bioelectronics, 62, 325–330. https://doi.org/10.1016/j.bios.2014.07.006

Hammond, J. L., Formisano, N., Estrela, P., Carrara, S., & Tkac, J. (2016). Electrochemical biosensors and nanobiosensors. Essays in Biochemistry, 60(1), 69–80. https://doi.org/10.1042/EBC20150008

Heidari, R., Rashidiani, J., Abkar, M., Taheri, R. A., Moghaddam, M. M., Mirhosseini, S. A., Seidmoradi, R., Nourani, M. R., Mahboobi, M., Keihan, A. H., & Kooshki, H. (2019). CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: P53. Biosensors and Bioelectronics, 126, 7–14. https://doi.org/10.1016/j.bios.2018.10.031

Hideshima, S., Hayashi, H., Hinou, H., Nambuya, S., Kuroiwa, S., Nakanishi, T., Momma, T., Nishimura, S.-I., Sakoda, Y., & Osaka, T. (2019). Glycan-immobilized dual-channel field effect transistor biosensor for the rapid identification of pandemic influenza viral particles. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-48076-6

Hjiri, M., Dhahri, R., Ben Mansour, N., El Mir, L., Bonyani, M., Mirzaei, A., Leonardi, S. G., & Neri, G. (2015). Electrochemical properties of a novel Ni-doped nanoporous carbon. Materials Letters, 160, 452–455. https://doi.org/10.1016/j.matlet.2015.08.001

Ho, J.-A. A., Chiu, J.-K., Hong, J.-C., Lin, C.-C., Hwang, K.-C., & Hwu, J.-R. R. (2009). Gold-nanostructured immunosensor for the electrochemical sensing of biotin based on liposomal competitive assay. Journal of Nanoscience and Nanotechnology, 9(4), 2324–2329. https://doi.org/10.1166/jnn.2009.se40

Hosseinzadeh, L., Fattahi, A., & Khoshroo, A. (2022). A Flexible Paper-based Electrochemical Immunosensor Towards Detection of Carbohydrate Antigen 15-3. Analytical and Bioanalytical Electrochemistry, 14(5), 445–454.

Hussein, H. A., Kandeil, A., Gomaa, M., Mohamed El Nashar, R., El-Sherbiny, I. M., & Hassan, R. Y. A. (2021). SARS-CoV-2-Impedimetric Biosensor: Virus-Imprinted Chips for Early and Rapid Diagnosis. ACS Sensors, 6(11), 4098–4107. https://doi.org/10.1021/acssensors.1c01614

Inezia Aurelia, A. (2005). Studi modifikasi glassy carbon (GC) dengan teknik elektrodeposisi iridium oksida untuk aplikasi sebagai elektroda sensor arsen (III). Universitas Indonesia Library; [Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;, ]. https://lib.ui.ac.id

Jirasirichote, A., Punrat, E., Suea-Ngam, A., Chailapakul, O., & Chuanuwatanakul, S. (2017). Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta, 175, 331–337. https://doi.org/10.1016/j.talanta.2017.07.050

JosypÄuk, O., Barek, J., & JosypÄuk, B. (2019). Silver Amalgam Tubular Detector Combined with Platinum Auxiliary Electrode for Electrochemical Measurements in Flow Systems. Electroanalysis, 31(10), 1878–1887. https://doi.org/10.1002/elan.201900049

Layqah, L. A., & Eissa, S. (2019). An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochimica Acta, 186(4), 224. https://doi.org/10.1007/s00604-019-3345-5

Li, Q., Dou, X., Zhang, L., Zhao, X., Luo, J., & Yang, M. (2019). Oriented assembly of surface plasmon resonance biosensor through staphylococcal protein A for the chlorpyrifos detection. Analytical and Bioanalytical Chemistry, 411(23), 6057–6066. https://doi.org/10.1007/s00216-019-01990-0

Li, W., Qiao, X., Hong, C., Ma, C., & Song, Y. (2020). A sandwich-type electrochemical immunosensor for detecting CEA based on CeO2-MoS2 absorbed Pb2+. Analytical Biochemistry, 592, 113566. https://doi.org/10.1016/j.ab.2019.113566

Li, Z., Zhang, J., Huang, Y., Zhai, J., Liao, G., Wang, Z., & Ning, C. (2022). Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coordination Chemistry Reviews, 471, 214723. https://doi.org/10.1016/j.ccr.2022.214723

Liang, J., Wang, J., Zhang, L., Wang, S., Yao, C., & Zhang, Z. (2018). Conductometric immunoassay of alpha-fetoprotein in sera of liver cancer patients using bienzyme-functionalized nanometer-sized silica beads. The Analyst, 144(1), 265–273. https://doi.org/10.1039/c8an01791c

Liang, K.-Z., Qi, J.-S., Mu, W.-J., & Liu, Z.-X. (2009). Conductometric immunoassay for interleukin-6 in human serum based on organic/inorganic hybrid membrane-functionalized interface. Bioprocess and Biosystems Engineering, 32(3), 353–359. https://doi.org/10.1007/s00449-008-0254-0

Liu, L., Chao, Y., Cao, W., Wang, Y., Luo, C., Pang, X., Fan, D., & Wei, Q. (2014). A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Analytica Chimica Acta, 847, 29–36. https://doi.org/10.1016/j.aca.2014.07.026

Liu, X., Yang, Z., Zhang, Y., & Yu, R. (2013). A novel electrochemical immunosensor for ochratoxin A with hapten immobilization on thionine/gold nanoparticle modified glassy carbon electrode. Anal. Methods, 5, 1481–1486. https://doi.org/10.1039/C2AY26271A

Mat Zaid, M. H., Abdullah, J., Rozi, N., Mohamad Rozlan, A. A., & Abu Hanifah, S. (2020). A Sensitive Impedimetric Aptasensor Based on Carbon Nanodots Modified Electrode for Detection of 17ß-Estradiol. Nanomaterials, 10(7), Article 7. https://doi.org/10.3390/nano10071346

Mayorga-Martinez, C. C., Cadevall, M., Guix, M., Ros, J., & Merkoçi, A. (2013). Bismuth nanoparticles for phenolic compounds biosensing application. Biosensors & Bioelectronics, 40(1), 57–62. https://doi.org/10.1016/j.bios.2012.06.010

Mazloum-Ardakani, M., Hosseinzadeh, L., & Khoshroo, A. (2015). Ultrasensitive Electrochemical Immunosensor for Detection of Tumor Necrosis Factor-α Based on Functionalized MWCNT-Gold Nanoparticle/Ionic Liquid Nanocomposite. Electroanalysis, 27(11), 2518–2526. https://doi.org/10.1002/elan.201500104

Migliorini, F. L., Santos, D. M. dos, Soares, A. C., Mattoso, L. H. C., Oliveira, O. N., & Correa, D. S. (2020). Design of A Low-Cost and Disposable Paper-Based Immunosensor for the Rapid and Sensitive Detection of Aflatoxin B1. Chemosensors, 8(3), Article 3. https://doi.org/10.3390/chemosensors8030087

Moina, C., & Ybarra, G. (2012). Fundamentals and Applications of Immunosensors. In Adv. Immunoass. Technol. https://doi.org/10.5772/36947

Mutlaq, S., Albiss, B., Al-Nabulsi, A., Jaradat, Z., Olaimat, A., Khalifeh, M., Osaili, T., Ayyash, M., & Holley, R. (2021). Conductometric Immunosensor for Escherichia coli O157:H7 Detection Based on Polyaniline/Zinc Oxide (PANI/ZnO) Nanocomposite. Polymers, 13, 3288. https://doi.org/10.3390/polym13193288

Nakamura, M., Matsui, Y., Takada, T., & Yamana, K. (2019). Chromophore Arrays Constructed in the Major Groove of DNA Duplexes Using a Post-Synthetic Strategy. ChemistrySelect, 4(4), 1525–1529. https://doi.org/10.1002/slct.201803464

Niu, X., Lan, M., Zhao, H., & Chen, C. (2013). Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Nickel Nanostructures. Analytical Chemistry, 85(7), 3561–3569. https://doi.org/10.1021/ac3030976

Núnez-Bajo, E., Blanco-López, M. C., Costa-García, A., & Fernández-Abedul, M. T. (2018). In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta, 178, 160–165. https://doi.org/10.1016/j.talanta.2017.08.104

Ojha, R. P., Singh, P., Azad, U. P., & Prakash, R. (2022). Impedimetric immunosensor for the NS1 dengue biomarker based on the gold nanorod decorated graphitic carbon nitride modified electrode. Electrochimica Acta, 411, 140069. https://doi.org/10.1016/j.electacta.2022.140069

Polat, E. O., Cetin, M. M., Tabak, A. F., Bilget Güven, E., Uysal, B. Ö., Arsan, T., Kabbani, A., Hamed, H., & Gül, S. B. (2022). Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors, 12(6), Article 6. https://doi.org/10.3390/bios12060385

Popa, A., Abenojar, E. C., Vianna, A., Buenviaje, C. Y. A., Yang, J., Pascual, C. B., & Samia, A. C. S. (2015, August 17). Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips (world) [Research-article]. ACS Publications; American Chemical Society and Division of Chemical Education, Inc. https://doi.org/10.1021/acs.jchemed.5b00096

Ranjan, P., Singhal, A., Yadav, S., Kumar, N., Murali, S., Sanghi, S. K., & Khan, R. (2021). Rapid diagnosis of SARS-CoV-2 using potential point-of-care electrochemical immunosensor: Toward the future prospects. International Reviews of Immunology, 40(1–2), 126–142. https://doi.org/10.1080/08830185.2021.1872566

Razzino, C. A., Serafín, V., Gamella, M., Pedrero, M., Montero-Calle, A., Barderas, R., Calero, M., Lobo, A. O., Yáñez-Sedeño, P., Campuzano, S., & Pingarrón, J. M. (2020). An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosensors and Bioelectronics, 163, 112238. https://doi.org/10.1016/j.bios.2020.112238

Russell, C., Ward, A. C., Vezza, V., Hoskisson, P., Alcorn, D., Steenson, D. P., & Corrigan, D. K. (2019). Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosensors and Bioelectronics, 126, 806–814. https://doi.org/10.1016/j.bios.2018.11.053

Sadique, Mohd. A., Yadav, S., Ranjan, P., Khan, R., Khan, F., Kumar, A., & Biswas, D. (2022). Highly Sensitive Electrochemical Immunosensor Platforms for Dual Detection of SARS-CoV-2 Antigen and Antibody based on Gold Nanoparticle Functionalized Graphene Oxide Nanocomposites. ACS Applied Bio Materials, 5(5), 2421–2430. https://doi.org/10.1021/acsabm.2c00301

Samadi Pakchin, P., Fathi, M., Ghanbari, H., Saber, R., & Omidi, Y. (2020). A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosensors & Bioelectronics, 153, 112029. https://doi.org/10.1016/j.bios.2020.112029

Samandari, L., Bahrami, A., Shamsipur, M., Farzin, L., & Hashemi, B. (2019). Electrochemical preconcentration of ultra-trace Cd2+ from environmental and biological samples prior to its determination using carbon paste electrode impregnated with ion imprinted polymer nanoparticles. International Journal of Environmental Analytical Chemistry, 99(2), 172–186. https://doi.org/10.1080/03067319.2019.1583334

Schachinger, F., Chang, H., Scheiblbrandner, S., & Ludwig, R. (2021). Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules, 26(15), 4525. https://doi.org/10.3390/molecules26154525

Schreiber, C. L., Li, D.-H., & Smith, B. D. (2021). High-Performance Near-Infrared Fluorescent Secondary Antibodies for Immunofluorescence. Analytical Chemistry, 93(7), 3643–3651. https://doi.org/10.1021/acs.analchem.1c00276

Shabalina, A. V., Svetlichnyi, V. A., Ryzhinskaya, K. A., & Lapin, I. N. (2017). Copper Nanoparticles for Ascorbic Acid Sensing in Water on Carbon Screen-printed Electrodes. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry, 33(12), 1415–1419. https://doi.org/10.2116/analsci.33.1415

Shamkhalichenar, H., & Choi, J.-W. (2017). An Inkjet-Printed Non-Enzymatic Hydrogen Peroxide Sensor on Paper. Journal of The Electrochemical Society, 164, B3101–B3106. https://doi.org/10.1149/2.0161705jes

Smith, S., Goodge, K., Delaney, M., Struzyk, A., Tansey, N., & Frey, M. (2020). A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. Nanomaterials, 10(11), Article 11. https://doi.org/10.3390/nano10112142

Teymouri, M., Mollazadeh, S., Mortazavi, H., Naderi Ghale-noie, Z., Keyvani, V., Aghababaei, F., Hamblin, M. R., Abbaszadeh-Goudarzi, G., Pourghadamyari, H., Hashemian, S. M. R., & Mirzaei, H. (2021). Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathology, Research and Practice, 221, 153443. https://doi.org/10.1016/j.prp.2021.153443

Tyagi, A., Nigam, S., & Chauhan, R. (2020). A Concise Review of Baseline Facts of SARSâ€CoVâ€2 for Interdisciplinary Research. ChemistrySelect, 5, 10897–10923. https://doi.org/10.1002/slct.202002420

Vargas, E., Teymourian, H., Tehrani, F., Eksin, E., Sánchez-Tirado, E., Warren, P., Erdem, A., Dassau, E., & Wang, J. (2019). Enzymatic/Immunoassay Dual-Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angewandte Chemie International Edition, 58(19), 6376–6379. https://doi.org/10.1002/anie.201902664

Viter, R., Savchuk, M., Iatsunskyi, I., Pietralik, Z., Starodub, N., Shpyrka, N., Ramanaviciene, A., & Ramanavicius, A. (2018). Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosensors and Bioelectronics, 99, 237–243. https://doi.org/10.1016/j.bios.2017.07.056

Wang, M., Hu, M., Hu, B., Guo, C., Song, Y., Jia, Q., He, L., Zhang, Z., & Fang, S. (2019). Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: Electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosensors and Bioelectronics, 135, 22–29. https://doi.org/10.1016/j.bios.2019.04.018

Wang, P.-G., Li, B.-R., Wang, Y.-L., Wu, C.-C., & Chen, J.-C. (2023). Application of aminobenzoic acid electrodeposited screen-printed carbon electrode in the beta-amyloid electrochemical impedance spectroscopy immunoassay. Talanta, 254, 124154. https://doi.org/10.1016/j.talanta.2022.124154

Wu, H., Fan, S., Zhang, W., Chen, H., Peng, L., Jin, X., Ma, J., & Zhang, H. (2013). Amperometric immunosensor based on covalent immobilization of new methylene blue and penicillin polyclonal antibody for determination of penicillin G in milk. Analytical Methods, 6(2), 497–502. https://doi.org/10.1039/C3AY41624K

Yao, Z., Yang, X., Wu, F., Wu, W., & Wu, F. (2016). Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchimica Acta, 183(10), 2799–2806. https://doi.org/10.1007/s00604-016-1924-2

Yin, S., & Ma, Z. (2019). “Smart†sensing interface for the improvement of electrochemical immunosensor based on enzyme-Fenton reaction triggered destruction of Fe3+ cross-linked alginate hydrogel. Sensors and Actuators B: Chemical, 281, 857–863. https://doi.org/10.1016/j.snb.2018.11.030

Zhang, H., & Miller, B. L. (2019). Immunosensor-based label-free and multiplex detection of influenza viruses: State of the art. Biosensors & Bioelectronics, 141, 111476. https://doi.org/10.1016/j.bios.2019.111476

Downloads

Published

2023-03-30

Issue

Section

Literature Review

SHARE THIS