Immunosensor fabrication methods: A scoping review
DOI:
https://doi.org/10.31101/jhes.2531Keywords:
electrochemical characterization, electrode modification, immunosensor, linear range, limit of detectionAbstract
References
Alizadeh, N., Hallaj, R., & Salimi, A. (2018). Dual Amplified Electrochemical Immunosensor for Hepatitis B Virus Surface Antigen Detection Using Hemin/G-Quadruplex Immobilized onto Fe3O4-AuNPs or (Hemin-Amino-rGO-Au) Nanohybrid. Electroanalysis, 30(3), 402–414. https://doi.org/10.1002/elan.201700727
Alizadeh, T., Ganjali, M. R., Akhoundian, M., & Norouzi, P. (2016). Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes. Microchimica Acta, 183(3), 1123–1130. https://doi.org/10.1007/s00604-015-1702-6
Aydin, M., Aydin, E. B., & Sezgintürk, M. K. (2021). Advances in immunosensor technology. Advances in clinical chemistry, 102, 1–62. https://doi.org/10.1016/bs.acc.2020.08.001
Bonini, A., Poma, N., Vivaldi, F., Kirchhain, A., Salvo, P., Bottai, D., Tavanti, A., & Di Francesco, F. (2021). Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. Journal of Pharmaceutical and Biomedical Analysis, 192, 113645. https://doi.org/10.1016/j.jpba.2020.113645
Bujes-Garrido, J., Izquierdo-Bote, D., Heras, A., Colina, A., & Arcos-MartÃnez, M. J. (2018). Determination of halides using Ag nanoparticles-modified disposable electrodes. A first approach to a wearable sensor for quantification of chloride ions. Analytica Chimica Acta, 1012, 42–48. https://doi.org/10.1016/j.aca.2018.01.063
Burcu Bahadır, E., & Kemal Sezgintürk, M. (2015). Applications of electrochemical immunosensors for early clinical diagnostics. Talanta, 132, 162–174. https://doi.org/10.1016/j.talanta.2014.08.063
Castrovilli, M. C., Bolognesi, P., Chiarinelli, J., Avaldi, L., Cartoni, A., Calandra, P., Tempesta, E., Giardi, M. T., Antonacci, A., Arduini, F., & Scognamiglio, V. (2020). Electrospray deposition as a smart technique for laccase immobilisation on carbon black-nanomodified screen-printed electrodes. Biosensors and Bioelectronics, 163, 112299. https://doi.org/10.1016/j.bios.2020.112299
Chen, P., Hua, X., Liu, J., Liu, H., Xia, F., Tian, D., & Zhou, C. (2019). A dual amplification electrochemical immunosensor based on HRP-Au@Ag NPs for carcinoembryonic antigen detection. Analytical Biochemistry, 574, 23–30. https://doi.org/10.1016/j.ab.2019.03.003
Chen, Z.-G. (2008). Conductometric immunosensors for the detection of staphylococcal enterotoxin B based bio-electrocalytic reaction on micro-comb electrodes. Bioprocess and Biosystems Engineering, 31(4), 345–350. https://doi.org/10.1007/s00449-007-0168-2
Chevaliez, S., & Pawlotsky, J.-M. (2018). New virological tools for screening, diagnosis and monitoring of hepatitis B and C in resource-limited settings. Journal of Hepatology, 69. https://doi.org/10.1016/j.jhep.2018.05.017
Chou, T.-C., Wu, K.-Y., Hsu, F.-X., & Lee, C.-K. (2018). Pt-MWCNT modified carbon electrode strip for rapid and quantitative detection of H2O2 in food. Journal of Food and Drug Analysis, 26(2), 662–669. https://doi.org/10.1016/j.jfda.2017.08.005
Cimafonte, M., Fulgione, A., Gaglione, R., Papaianni, M., Capparelli, R., Arciello, A., Bolletti Censi, S., Borriello, G., Velotta, R., & Della Ventura, B. (2020). Screen Printed Based Impedimetric Immunosensor for Rapid Detection of Escherichia coli in Drinking Water. Sensors, 20(1), Article 1. https://doi.org/10.3390/s20010274
Clark, L. C., & Lyons, C. (1962). Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x
Dai, L., Li, Y., Wang, Y., Luo, X., Wei, D., Feng, R., Yan, T., Ren, X., Du, B., & Wei, Q. (2019). A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosensors and Bioelectronics, 132, 97–104. https://doi.org/10.1016/j.bios.2019.02.055
Daniels, J. S., & Pourmand, N. (2007). Label-Free Impedance Biosensors: Opportunities and Challenges. Electroanalysis, 19(12), 1239–1257. https://doi.org/10.1002/elan.200603855
Dides, M., Hernández, J., & Olivares, L. (2021). Uranium tetrafluoride production using the dropping mercury electrode. Journal of Fluorine Chemistry, 246, 109773. https://doi.org/10.1016/j.jfluchem.2021.109773
Ding, J., & Qin, W. (2020). Recent advances in potentiometric biosensors. TrAC Trends in Analytical Chemistry, 124, 115803. https://doi.org/10.1016/j.trac.2019.115803
Duran, B. G., Castañeda, E., & Armijo, F. (2019). Development of an electrochemical impedimetric immunosensor for Corticotropin Releasing Hormone (CRH) using half-antibody fragments as elements of biorecognition. Biosensors and Bioelectronics, 131, 171–177. https://doi.org/10.1016/j.bios.2019.02.017
Emir, G., Dilgin, Y., Ramanaviciene, A., & Ramanavicius, A. (2021). Amperometric nonenzymatic glucose biosensor based on graphite rod electrode modified by Ni-nanoparticle/polypyrrole composite. Microchemical Journal, 161, 105751. https://doi.org/10.1016/j.microc.2020.105751
Figueiredo, A., Vieira, N. C. S., dos Santos, J. F., Janegitz, B. C., Aoki, S. M., Junior, P. P., Lovato, R. L., Nogueira, M. L., Zucolotto, V., & Guimarães, F. E. G. (2015). Electrical Detection of Dengue Biomarker Using Egg Yolk Immunoglobulin as the Biological Recognition Element. Scientific Reports, 5(1), Article 1. https://doi.org/10.1038/srep07865
Fukushima, K., Momose, M., Kanaya, K., Kaimoto, Y., Higuchi, T., Yamamoto, A., Nakao, R., Matsuo, Y., Nagao, M., Kuji, I., & Abe, K. (2021). Imaging of Heart Type Fatty Acid Binding Protein Under Acute Reperfusion Ischemia Using Radio-labeled Antibody in Rat Heart Model. Annals of Nuclear Cardiology, advpub, 21–00146. https://doi.org/10.17996/anc.21-00146
Gandhi, S., Suman, P., Kumar, A., Sharma, P., Capalash, N., & Suri, C. R. (2015). Recent advances in immunosensor for narcotic drug detection. BioImpacts: BI, 5(4), 207–213. https://doi.org/10.15171/bi.2015.30
Gao, Z., Li, Y., Zhang, X., Feng, J., Kong, L., Wang, P., Chen, Z., Dong, Y., & Wei, Q. (2018). Ultrasensitive electrochemical immunosensor for quantitative detection of HBeAg using Au@Pd/MoS2@MWCNTs nanocomposite as enzyme-mimetic labels. Biosensors and Bioelectronics, 102, 189–195. https://doi.org/10.1016/j.bios.2017.11.032
GarcÃa, M., & Escarpa, A. (2012). A class-selective and reliable electrochemical monosaccharide index in honeys, as determined using nickel and nickel-copper nanowires. Analytical and Bioanalytical Chemistry, 402(2), 945–953. https://doi.org/10.1007/s00216-011-5453-x
Gatselou, V. A., Giokas, D. L., Vlessidis, A. G., & Prodromidis, M. I. (2015). Rhodium nanoparticle-modified screen-printed graphite electrodes for the determination of hydrogen peroxide in tea extracts in the presence of oxygen. Talanta, 134, 482–487. https://doi.org/10.1016/j.talanta.2014.11.033
Giannetto, M., Costantini, M., Mattarozzi, M., & Careri, M. (2017). Innovative gold-free carbon nanotube/chitosan-based competitive immunosensor for determination of HIV-related p24 capsid protein in serum. RSC Adv., 7, 39970–39976. https://doi.org/10.1039/C7RA07245G
Giannetto, M., Mattarozzi, M., Umiltà , E., Manfredi, A., Quaglia, S., & Careri, M. (2014). An amperometric immunosensor for diagnosis of celiac disease based on covalent immobilization of open conformation tissue transglutaminase for determination of anti-tTG antibodies in human serum. Biosensors and Bioelectronics, 62, 325–330. https://doi.org/10.1016/j.bios.2014.07.006
Hammond, J. L., Formisano, N., Estrela, P., Carrara, S., & Tkac, J. (2016). Electrochemical biosensors and nanobiosensors. Essays in Biochemistry, 60(1), 69–80. https://doi.org/10.1042/EBC20150008
Heidari, R., Rashidiani, J., Abkar, M., Taheri, R. A., Moghaddam, M. M., Mirhosseini, S. A., Seidmoradi, R., Nourani, M. R., Mahboobi, M., Keihan, A. H., & Kooshki, H. (2019). CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: P53. Biosensors and Bioelectronics, 126, 7–14. https://doi.org/10.1016/j.bios.2018.10.031
Hideshima, S., Hayashi, H., Hinou, H., Nambuya, S., Kuroiwa, S., Nakanishi, T., Momma, T., Nishimura, S.-I., Sakoda, Y., & Osaka, T. (2019). Glycan-immobilized dual-channel field effect transistor biosensor for the rapid identification of pandemic influenza viral particles. Scientific Reports, 9(1), Article 1. https://doi.org/10.1038/s41598-019-48076-6
Hjiri, M., Dhahri, R., Ben Mansour, N., El Mir, L., Bonyani, M., Mirzaei, A., Leonardi, S. G., & Neri, G. (2015). Electrochemical properties of a novel Ni-doped nanoporous carbon. Materials Letters, 160, 452–455. https://doi.org/10.1016/j.matlet.2015.08.001
Ho, J.-A. A., Chiu, J.-K., Hong, J.-C., Lin, C.-C., Hwang, K.-C., & Hwu, J.-R. R. (2009). Gold-nanostructured immunosensor for the electrochemical sensing of biotin based on liposomal competitive assay. Journal of Nanoscience and Nanotechnology, 9(4), 2324–2329. https://doi.org/10.1166/jnn.2009.se40
Hosseinzadeh, L., Fattahi, A., & Khoshroo, A. (2022). A Flexible Paper-based Electrochemical Immunosensor Towards Detection of Carbohydrate Antigen 15-3. Analytical and Bioanalytical Electrochemistry, 14(5), 445–454.
Hussein, H. A., Kandeil, A., Gomaa, M., Mohamed El Nashar, R., El-Sherbiny, I. M., & Hassan, R. Y. A. (2021). SARS-CoV-2-Impedimetric Biosensor: Virus-Imprinted Chips for Early and Rapid Diagnosis. ACS Sensors, 6(11), 4098–4107. https://doi.org/10.1021/acssensors.1c01614
Inezia Aurelia, A. (2005). Studi modifikasi glassy carbon (GC) dengan teknik elektrodeposisi iridium oksida untuk aplikasi sebagai elektroda sensor arsen (III). Universitas Indonesia Library; [Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;, ]. https://lib.ui.ac.id
Jirasirichote, A., Punrat, E., Suea-Ngam, A., Chailapakul, O., & Chuanuwatanakul, S. (2017). Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta, 175, 331–337. https://doi.org/10.1016/j.talanta.2017.07.050
JosypÄuk, O., Barek, J., & JosypÄuk, B. (2019). Silver Amalgam Tubular Detector Combined with Platinum Auxiliary Electrode for Electrochemical Measurements in Flow Systems. Electroanalysis, 31(10), 1878–1887. https://doi.org/10.1002/elan.201900049
Layqah, L. A., & Eissa, S. (2019). An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochimica Acta, 186(4), 224. https://doi.org/10.1007/s00604-019-3345-5
Li, Q., Dou, X., Zhang, L., Zhao, X., Luo, J., & Yang, M. (2019). Oriented assembly of surface plasmon resonance biosensor through staphylococcal protein A for the chlorpyrifos detection. Analytical and Bioanalytical Chemistry, 411(23), 6057–6066. https://doi.org/10.1007/s00216-019-01990-0
Li, W., Qiao, X., Hong, C., Ma, C., & Song, Y. (2020). A sandwich-type electrochemical immunosensor for detecting CEA based on CeO2-MoS2 absorbed Pb2+. Analytical Biochemistry, 592, 113566. https://doi.org/10.1016/j.ab.2019.113566
Li, Z., Zhang, J., Huang, Y., Zhai, J., Liao, G., Wang, Z., & Ning, C. (2022). Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coordination Chemistry Reviews, 471, 214723. https://doi.org/10.1016/j.ccr.2022.214723
Liang, J., Wang, J., Zhang, L., Wang, S., Yao, C., & Zhang, Z. (2018). Conductometric immunoassay of alpha-fetoprotein in sera of liver cancer patients using bienzyme-functionalized nanometer-sized silica beads. The Analyst, 144(1), 265–273. https://doi.org/10.1039/c8an01791c
Liang, K.-Z., Qi, J.-S., Mu, W.-J., & Liu, Z.-X. (2009). Conductometric immunoassay for interleukin-6 in human serum based on organic/inorganic hybrid membrane-functionalized interface. Bioprocess and Biosystems Engineering, 32(3), 353–359. https://doi.org/10.1007/s00449-008-0254-0
Liu, L., Chao, Y., Cao, W., Wang, Y., Luo, C., Pang, X., Fan, D., & Wei, Q. (2014). A label-free amperometric immunosensor for detection of zearalenone based on trimetallic Au-core/AgPt-shell nanorattles and mesoporous carbon. Analytica Chimica Acta, 847, 29–36. https://doi.org/10.1016/j.aca.2014.07.026
Liu, X., Yang, Z., Zhang, Y., & Yu, R. (2013). A novel electrochemical immunosensor for ochratoxin A with hapten immobilization on thionine/gold nanoparticle modified glassy carbon electrode. Anal. Methods, 5, 1481–1486. https://doi.org/10.1039/C2AY26271A
Mat Zaid, M. H., Abdullah, J., Rozi, N., Mohamad Rozlan, A. A., & Abu Hanifah, S. (2020). A Sensitive Impedimetric Aptasensor Based on Carbon Nanodots Modified Electrode for Detection of 17ß-Estradiol. Nanomaterials, 10(7), Article 7. https://doi.org/10.3390/nano10071346
Mayorga-Martinez, C. C., Cadevall, M., Guix, M., Ros, J., & Merkoçi, A. (2013). Bismuth nanoparticles for phenolic compounds biosensing application. Biosensors & Bioelectronics, 40(1), 57–62. https://doi.org/10.1016/j.bios.2012.06.010
Mazloum-Ardakani, M., Hosseinzadeh, L., & Khoshroo, A. (2015). Ultrasensitive Electrochemical Immunosensor for Detection of Tumor Necrosis Factor-α Based on Functionalized MWCNT-Gold Nanoparticle/Ionic Liquid Nanocomposite. Electroanalysis, 27(11), 2518–2526. https://doi.org/10.1002/elan.201500104
Migliorini, F. L., Santos, D. M. dos, Soares, A. C., Mattoso, L. H. C., Oliveira, O. N., & Correa, D. S. (2020). Design of A Low-Cost and Disposable Paper-Based Immunosensor for the Rapid and Sensitive Detection of Aflatoxin B1. Chemosensors, 8(3), Article 3. https://doi.org/10.3390/chemosensors8030087
Moina, C., & Ybarra, G. (2012). Fundamentals and Applications of Immunosensors. In Adv. Immunoass. Technol. https://doi.org/10.5772/36947
Mutlaq, S., Albiss, B., Al-Nabulsi, A., Jaradat, Z., Olaimat, A., Khalifeh, M., Osaili, T., Ayyash, M., & Holley, R. (2021). Conductometric Immunosensor for Escherichia coli O157:H7 Detection Based on Polyaniline/Zinc Oxide (PANI/ZnO) Nanocomposite. Polymers, 13, 3288. https://doi.org/10.3390/polym13193288
Nakamura, M., Matsui, Y., Takada, T., & Yamana, K. (2019). Chromophore Arrays Constructed in the Major Groove of DNA Duplexes Using a Post-Synthetic Strategy. ChemistrySelect, 4(4), 1525–1529. https://doi.org/10.1002/slct.201803464
Niu, X., Lan, M., Zhao, H., & Chen, C. (2013). Highly Sensitive and Selective Nonenzymatic Detection of Glucose Using Three-Dimensional Porous Nickel Nanostructures. Analytical Chemistry, 85(7), 3561–3569. https://doi.org/10.1021/ac3030976
Núnez-Bajo, E., Blanco-López, M. C., Costa-GarcÃa, A., & Fernández-Abedul, M. T. (2018). In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta, 178, 160–165. https://doi.org/10.1016/j.talanta.2017.08.104
Ojha, R. P., Singh, P., Azad, U. P., & Prakash, R. (2022). Impedimetric immunosensor for the NS1 dengue biomarker based on the gold nanorod decorated graphitic carbon nitride modified electrode. Electrochimica Acta, 411, 140069. https://doi.org/10.1016/j.electacta.2022.140069
Polat, E. O., Cetin, M. M., Tabak, A. F., Bilget Güven, E., Uysal, B. Ö., Arsan, T., Kabbani, A., Hamed, H., & Gül, S. B. (2022). Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors, 12(6), Article 6. https://doi.org/10.3390/bios12060385
Popa, A., Abenojar, E. C., Vianna, A., Buenviaje, C. Y. A., Yang, J., Pascual, C. B., & Samia, A. C. S. (2015, August 17). Fabrication of Metal Nanoparticle-Modified Screen Printed Carbon Electrodes for the Evaluation of Hydrogen Peroxide Content in Teeth Whitening Strips (world) [Research-article]. ACS Publications; American Chemical Society and Division of Chemical Education, Inc. https://doi.org/10.1021/acs.jchemed.5b00096
Ranjan, P., Singhal, A., Yadav, S., Kumar, N., Murali, S., Sanghi, S. K., & Khan, R. (2021). Rapid diagnosis of SARS-CoV-2 using potential point-of-care electrochemical immunosensor: Toward the future prospects. International Reviews of Immunology, 40(1–2), 126–142. https://doi.org/10.1080/08830185.2021.1872566
Razzino, C. A., SerafÃn, V., Gamella, M., Pedrero, M., Montero-Calle, A., Barderas, R., Calero, M., Lobo, A. O., Yáñez-Sedeño, P., Campuzano, S., & Pingarrón, J. M. (2020). An electrochemical immunosensor using gold nanoparticles-PAMAM-nanostructured screen-printed carbon electrodes for tau protein determination in plasma and brain tissues from Alzheimer patients. Biosensors and Bioelectronics, 163, 112238. https://doi.org/10.1016/j.bios.2020.112238
Russell, C., Ward, A. C., Vezza, V., Hoskisson, P., Alcorn, D., Steenson, D. P., & Corrigan, D. K. (2019). Development of a needle shaped microelectrode for electrochemical detection of the sepsis biomarker interleukin-6 (IL-6) in real time. Biosensors and Bioelectronics, 126, 806–814. https://doi.org/10.1016/j.bios.2018.11.053
Sadique, Mohd. A., Yadav, S., Ranjan, P., Khan, R., Khan, F., Kumar, A., & Biswas, D. (2022). Highly Sensitive Electrochemical Immunosensor Platforms for Dual Detection of SARS-CoV-2 Antigen and Antibody based on Gold Nanoparticle Functionalized Graphene Oxide Nanocomposites. ACS Applied Bio Materials, 5(5), 2421–2430. https://doi.org/10.1021/acsabm.2c00301
Samadi Pakchin, P., Fathi, M., Ghanbari, H., Saber, R., & Omidi, Y. (2020). A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosensors & Bioelectronics, 153, 112029. https://doi.org/10.1016/j.bios.2020.112029
Samandari, L., Bahrami, A., Shamsipur, M., Farzin, L., & Hashemi, B. (2019). Electrochemical preconcentration of ultra-trace Cd2+ from environmental and biological samples prior to its determination using carbon paste electrode impregnated with ion imprinted polymer nanoparticles. International Journal of Environmental Analytical Chemistry, 99(2), 172–186. https://doi.org/10.1080/03067319.2019.1583334
Schachinger, F., Chang, H., Scheiblbrandner, S., & Ludwig, R. (2021). Amperometric Biosensors Based on Direct Electron Transfer Enzymes. Molecules, 26(15), 4525. https://doi.org/10.3390/molecules26154525
Schreiber, C. L., Li, D.-H., & Smith, B. D. (2021). High-Performance Near-Infrared Fluorescent Secondary Antibodies for Immunofluorescence. Analytical Chemistry, 93(7), 3643–3651. https://doi.org/10.1021/acs.analchem.1c00276
Shabalina, A. V., Svetlichnyi, V. A., Ryzhinskaya, K. A., & Lapin, I. N. (2017). Copper Nanoparticles for Ascorbic Acid Sensing in Water on Carbon Screen-printed Electrodes. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry, 33(12), 1415–1419. https://doi.org/10.2116/analsci.33.1415
Shamkhalichenar, H., & Choi, J.-W. (2017). An Inkjet-Printed Non-Enzymatic Hydrogen Peroxide Sensor on Paper. Journal of The Electrochemical Society, 164, B3101–B3106. https://doi.org/10.1149/2.0161705jes
Smith, S., Goodge, K., Delaney, M., Struzyk, A., Tansey, N., & Frey, M. (2020). A Comprehensive Review of the Covalent Immobilization of Biomolecules onto Electrospun Nanofibers. Nanomaterials, 10(11), Article 11. https://doi.org/10.3390/nano10112142
Teymouri, M., Mollazadeh, S., Mortazavi, H., Naderi Ghale-noie, Z., Keyvani, V., Aghababaei, F., Hamblin, M. R., Abbaszadeh-Goudarzi, G., Pourghadamyari, H., Hashemian, S. M. R., & Mirzaei, H. (2021). Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathology, Research and Practice, 221, 153443. https://doi.org/10.1016/j.prp.2021.153443
Tyagi, A., Nigam, S., & Chauhan, R. (2020). A Concise Review of Baseline Facts of SARSâ€CoVâ€2 for Interdisciplinary Research. ChemistrySelect, 5, 10897–10923. https://doi.org/10.1002/slct.202002420
Vargas, E., Teymourian, H., Tehrani, F., Eksin, E., Sánchez-Tirado, E., Warren, P., Erdem, A., Dassau, E., & Wang, J. (2019). Enzymatic/Immunoassay Dual-Biomarker Sensing Chip: Towards Decentralized Insulin/Glucose Detection. Angewandte Chemie International Edition, 58(19), 6376–6379. https://doi.org/10.1002/anie.201902664
Viter, R., Savchuk, M., Iatsunskyi, I., Pietralik, Z., Starodub, N., Shpyrka, N., Ramanaviciene, A., & Ramanavicius, A. (2018). Analytical, thermodynamical and kinetic characteristics of photoluminescence immunosensor for the determination of Ochratoxin A. Biosensors and Bioelectronics, 99, 237–243. https://doi.org/10.1016/j.bios.2017.07.056
Wang, M., Hu, M., Hu, B., Guo, C., Song, Y., Jia, Q., He, L., Zhang, Z., & Fang, S. (2019). Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: Electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosensors and Bioelectronics, 135, 22–29. https://doi.org/10.1016/j.bios.2019.04.018
Wang, P.-G., Li, B.-R., Wang, Y.-L., Wu, C.-C., & Chen, J.-C. (2023). Application of aminobenzoic acid electrodeposited screen-printed carbon electrode in the beta-amyloid electrochemical impedance spectroscopy immunoassay. Talanta, 254, 124154. https://doi.org/10.1016/j.talanta.2022.124154
Wu, H., Fan, S., Zhang, W., Chen, H., Peng, L., Jin, X., Ma, J., & Zhang, H. (2013). Amperometric immunosensor based on covalent immobilization of new methylene blue and penicillin polyclonal antibody for determination of penicillin G in milk. Analytical Methods, 6(2), 497–502. https://doi.org/10.1039/C3AY41624K
Yao, Z., Yang, X., Wu, F., Wu, W., & Wu, F. (2016). Synthesis of differently sized silver nanoparticles on a screen-printed electrode sensitized with a nanocomposites consisting of reduced graphene oxide and cerium(IV) oxide for nonenzymatic sensing of hydrogen peroxide. Microchimica Acta, 183(10), 2799–2806. https://doi.org/10.1007/s00604-016-1924-2
Yin, S., & Ma, Z. (2019). “Smart†sensing interface for the improvement of electrochemical immunosensor based on enzyme-Fenton reaction triggered destruction of Fe3+ cross-linked alginate hydrogel. Sensors and Actuators B: Chemical, 281, 857–863. https://doi.org/10.1016/j.snb.2018.11.030
Zhang, H., & Miller, B. L. (2019). Immunosensor-based label-free and multiplex detection of influenza viruses: State of the art. Biosensors & Bioelectronics, 141, 111476. https://doi.org/10.1016/j.bios.2019.111476
Downloads
Published
Issue
Section
Citation Check
License
Copyright (c) 2023 JHeS (Journal of Health Studies)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
With the receipt of the article by the Journal of Health Studies Editorial Board and the decision to be published, then the copyright regarding the article will be diverted to Journal of Health Studies. Universitas 'Aisyiyah Yogyakarta as the publisher of Journal of Health Studies hold the copyright regarding all the published articles in this journal.
Journal of Health Studies is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.