The prototype of decision support system in condition infant detection with Fuzzy Tsukamoto

Authors

  • Agung Setiawan Faculty of Computer Science, Universitas Pasir Pengaraian, Indonesia
  • Budi Yanto Faculty of Computer Science, Universitas Pasir Pengaraian, Indonesia
  • Kiki Yasdomi Faculty of Computer Science, Universitas Pasir Pengaraian, Indonesia

DOI:

https://doi.org/10.31101/ijhst.v1i2.1100

Keywords:

baby condition, decision support system, Fuzzy Tsukamoto

Abstract

The baby’s condition is a condition that is vulnerable to environmental changes, especially weather changes. Knowledge of a mother in maintaining the health of baby also should be considered, especially in terms of nutritional intake. A healthy baby's condition affects the baby's growth and development. The development of a decision support system should be preceded by collecting and analyzing the data according to need. In this study, the variables were baby feeding items, namely Body Temperature (37.70c), Fuss (2.4), Restless (4.5), frequent bowel movements (3.7), watery bowel movements  (5.6), Bloating (3.5), Nausea (3.7), vomiting (3.2) , Stomachache (2.7) and Itchy Skin (2.8). The results of the calculations will result in defoliation as follows: Measles (1:48), septic (1:48), diarrhea (1:48), ISPA (7:36), enteritis (0.77), Miliary (1:48), OMP (1:48) and varicella (1:48). The range of fuzzy values ranges from 0 to 1, indicating the baby has enteritis or stomach problems. The calculation of defuzification obtained result of 8.1, so the condition of the baby is very sick and should be handled immediately by bringing to the medical personnel.

References

Agus Naba .(2009). Belajar Cepat Fuzzy Logic Menggunakan Matlab . Yogyakarta. Andi.

Cheung, W.M. and U. Kaymak. (2007). A fuzzy logic based trading system. In Proceedings of the Third European Symposium on Nature Inspired Smart Information Systems, St. Julians, Malta

Dourra, H., Siy, P. (2002) Investment using technical analysis and fuzzy logic. Fuzzy Sets and Systems 127(2), 221–240 Iman attarzadeh and Siew Hock Ow (2005). Improving the Accuracy of Software Cost Estimation Model Based on a Fuzzy Logic Model. World applied Science Journal.

Marshal Pokhrel.(2016). A" Fuzzy" Logic, Possibilistic" Methodology" for" Risk, Based" Inspection, University of Tromsø, Norway

Sri Kusumadewi dan Hari Purnomo .(2010). Aplikasi Logika Fuzzy untuk Pendukung Keputusan. Yogyakarta. Graha Ilmu.

Sri Kusumadewi .(2007). Sistem Fuzzy untuk Klasifikasi Indikator Kesehatan Daerah. Yogyakarta. Seminar TEKNOIN.

Sri Kusumadewi .(2009). Penentuan Tingkat Resiko Penyakit menggunakan Tsukamoto Fuzzy Inference System. Seminar Nasional II : The Application of Technology Toward a Better Life. Yogyakarta.

Setiono dan Sofa Marwoto .(2010). Pemodelan Logika Fuzzy Terhadap Kerusakan Jembatan Beton. Media Teknik Sipil UNS.

Tati Hartati dan Luthfi Kurnia .(2012). Sistem Pakar Mendiagnosa Penyakit Umum yang Sering di Derita Balita Berbasis Web di Dinas Kesehatan Kota Bandung. Jurnal Komputer dan Informatika (KOMPUTA).

Zadeh, L.A. (1996). Fuzzy logic Computing with words, IEEE Transactions on Fuzzy Systems 4,103–111.

Downloads

Published

2019-10-30

How to Cite

Setiawan, A., Yanto, B., & Yasdomi, K. (2019). The prototype of decision support system in condition infant detection with Fuzzy Tsukamoto. International Journal of Health Science and Technology, 1(2), 27–37. https://doi.org/10.31101/ijhst.v1i2.1100

Issue

Section

Articles

Citation Check